

Meta-Update

Samples Guide

 Software Tool House Inc.

© 2025 Software Tool House Inc.
 Release 6250
 Updated: 2025-Jun-01

Meta-Update - 2 - Script Samples

Preface

Audience

This document is intended for Remedy ARS and/or ServiceNow Administrators and developers.

It is expected that the reader will have knowledge of the Remedy ARS system and be familiar
with workflow development. It would behove the reader to be familiar with his ARS server’s
platform and scripting tools.

Limitation of Liability

This program is provided "as-is". We are in no way liable for any losses arising from your use of
this program, the sample scripts, or the documentation. It is your responsibility to evaluate this
program. It is your responsibility to backup and protect your data. It is your responsibility to
evaluate your use of this program for any particular purpose.

This manual does not represent a commitment to maintain any syntax or operation, nor is it
warranted to be complete or accurate.

Copyrights

This program and this manual are copyrighted © 1996-2025 by Software Tool House Inc.
Meta-Layer, Meta-Update, Meta-Query, Meta-Delete, Meta-Schema and Meta-Archive are
trademarks of Software Tool House Inc.

ARS, Remedy are registered trademarks of BMC Corporation.
ServiceNow is a registered trademark of ServiceNow, Inc.
Solaris is a registered trademark of Sun Microsystems Inc.
Windows is a registered trademark of Microsoft Corporation.
PCRE (Perl Compatible Regular Expression) library is copyrighted © 1997 – 2025 by University
of Cambridge and is distributed under the BSD license.
The curl library is copyrighted © 1996 – 2025 by daniel@haxx.se and is distributed under a MIT/X
derivative license.

Updates

This program and this manual may change from time to time. The latest version is available at
our web site: www.softwaretoolhouse.com.

Comments

Your comments are welcome! Please see: www.softwaretoolhouse.com/support and click
Comments, or email us at support@softwaretoolhouse.com. We look forward to hearing from
you!

http://www.softwaretoolhouse.com/
http://www.softwaretoolhouse.com/support
mailto:support@softwaretoolhouse.com

Meta-Update - 3 - Script Samples

Document Library

The following documents are included with Meta-Update.

File Contents

Meta-Update

Installation Guide
Meta-Update.and the Job Console installation guide.

Meta-Update Users

Guide.

This is a detailed reference on Meta-Update scripting. It is
used by script developers.

It covers developing and debugging scripts.

Meta-Update Samples

Guide

This document.

This is a detailed reference on many of the Meta-Update
sample scripts.

The samples do useful things and this document can be
used for learning Meta-Update scripting.

Templates for the samples are installed with the Job
Console application.

Meta-Update Job

Console Users Guide
This is a detailed reference on developing templates and
firing jobs using the Job Console.

Trace Daemon Users

Guide
The “Trc” version of the binaries communicate with a
process called the trace daemon. This is the User Guide
for implementing and using this process.

Meta-Update Release

Notes
This highlights changes made in this release of Meta-
Update.

Meta-Update - 4 - Script Samples

Organisation

This document outlines the samples included in
the samples directory of the extracted
distribution.

It is expected that the reader

 has installed Meta-Update on his local
workstation, and,

 has generated an SthLic.cmd or

SthLic.sh file. See Meta-Update

Installation Guide if needed.

 has read at least the Concepts section of
the Meta-Update User’s Guide

This document is split into three sections:

 It starts with a list and short description of
scripts in the samples folders of the

Meta-Update distribution.

 It then gives a brief overvoew of each
sample.

 Finally, it gives detailed descriptions of
the scripts using images of the script with
explanations in boxes.

Figure 1 Detail Descriptions of a Sample Script

file:///E:/Dta/BST/Dev/Mupd/trnk/docs/User_Doc/Meta-Update_Installation_Guide.pdf
file:///E:/Dta/BST/Dev/Mupd/trnk/docs/User_Doc/Meta-Update_Installation_Guide.pdf
Meta-Update_Users_Guide.pdf

Meta-Update - 5 - Script Samples

Document Conventions

Typefaces and conventions and icons are used in this document to add specific meaning as
follows:

Icon & Type

Conventions
Meaning

Windows sp ecific. Does not apply to Linux.

Linux specific. Does not apply to Windows.

Applies to BMC Remedy ARS server sessions. Cannot be used for, or
does not refer to ServiceNow sessions..

Applies to ServiceNow sessions. Cannot be used for, or does not refer
to BMC Remedy ARS server sesions.

Caution. Failure to follow recommended actions may cause data loss.

Courier Bold

Courier Bold i ndicates a command you can enter. For example:

set SthApiRetry=90 - 92 0 60 93 0 30

export SthApiRetry=90 - 92 0 60 93 0 30

Meta-Update - 6 - Script Samples

Table of Contents

Preface .. 2
Document Library ... 3
Organisation .. 4
Document Conventions .. 5
Table of Contents .. 6

Introduction .. 9
Data Challenges .. 10
Meta-Update: A New Way to Use The API .. 11

Running Meta-Update.. 15
Run Time Environment ... 16
BMC Remedy API Versions .. 17
ServiceNow API & System Properties .. 18
Program Versions ... 20
The License Key .. 21
Environment variables ... 22

Script Path Environment variable ... 22
API Retry Environment variable ... 23
License Environment Variable .. 24

The Command Line ... 25
Switches .. 25
Usage Help Text ... 27

Program Return Values .. 29
Program Output .. 30
Tracing ... 33

Two Trace Versions ... 34
Local Tracing .. 34
Server Tracing... 35

Trace Format ... 37
Firing from Workflow .. 39
Developing Scripts ... 40

Samples .. 43
Samples ... 44
Descriptions .. 46
100-Path ... 55
110-PathFind.. 58
003-SvrInfo... 61
005-ArSchema Report .. 64
600-ItsmVer .. 68
610- ItsmAppProp ... 70
900-SwLogs ... 73
910-SvrInfo-set .. 75
460-Change-Approve .. 77
Ticket Creation Batch Command .. 86
Closed Ticket Replicator .. 90
Server Delta Copy ... 96
ARS Table Backup and Restore .. 101

Index ... 114

Meta-Update - 7 - Script Samples

Introduction

Meta-Update - 8 - Script Samples

Meta-Update - 9 - Script Samples

Introduction

Thank you for selecting Meta-Update. With Meta-Update, creating repeatable imports,
migrations and batch operations on your ARS data is a snap.

Don’t bother with the API! Meta-Update provides a quick, robust, reliable, auditable method
of harnessing the power of the API without any programming at all.

Meta-Update - 10 - Script Samples

 Data Challenges

 Ever had trouble setting up an ARS data migration?
 From one server version to another?
 From one release of ITSM to another?
 From ITSM 6 or 5 or 4 to ITSM 9.1?
 From a bespoke ticketing and asset system to another different bespoke

application, to an ITSM implementation?

 Ever had trouble importing data into an ARS application?
 From a series of CSV files representing complex data trees?
 From CSV files that Excel or the import tool can’t handle: containing embedded

new-lines, and field values with embedded, undoubled quotes?
 From CSV files where the query to determine the update record is complex?
 From CSV files where the target update form changes for each row in the data?
 From fixed length transactional files / records?

 Ever had trouble getting data transformations right?

 Assigning the right Status values based upon a different set of incoming values
and more complex conditions?

 Selecting the fields to be updated based upon incoming transaction data, queried
data, read data?

 Setting the values based upon incoming transaction data, queried data, read
data?

 Assigning values to reserved fields like Create Date, and Submitter.

 Ever wanted to adjust, correct, merge, and change the ARS data that you have?
 Ever needed to combine two clients’ foundation data records?
 Ever wanted to rename or split up support groups?
 Ever needed to automate the importing of foundation data into the ITSM suite?

 Ever had trouble creating an ARS API program?

 Ever wasted time talking with a non-ARS programmer?
 Waited when making assignment or form logic changes for the programming

development cycle before seeing the results?

Meta-Update - 11 - Script Samples

 Meta-Update: A New Way to Use The API

With Meta-Update, these types of problems are handled quickly, with ease and confidence!

There is no need for an API programmer or any programmer at all.

The ARS Administrator / Developer scripts complex functions in the language he already
knows in minutes. He fine tunes mappings and assignments and gets his feedback
immediately. His runs are fully logged allowing complete resolution and recovery.

Development efforts for any migration or file import requirements are reduced to at least
1/10th.

That’s an order of magnitude savings on the initial development effort compounded by fewer
resources required to maintain or enhance scripts from the deployment on.

Compound that development savings with the confidence you get by using Meta-Update:

 The performance is that of the API run on the server or client.
 Jobs complete with “Log and Continue” error processing.
 Errors produce complete resolution and retry information logs.
 Jobs can be broken up in batches and run simultaneously on one or more machines.
 Core fields can be easily assigned on both primary and secondary forms.
 CSV files that fail on the import tool can be handled easily.
 Transactional files can be handled.
 Dates, times, users, status history can be set to any desired value.
 Diary fields’ entries can be looped through creating records in other forms.
 All ARS permissions and workflow is respected.

Meta-Update - 13 - Script Samples

Concepts

Meta-Update - 14 - Script Samples

Meta-Update - 15 - Script Samples

Running Meta-Update

In this section, we will cover:

 Setting up the run time environment
 BMC Remedy API versions
 Meta-Update program versions
 Using the license keys
 Environment variables
 The Meta-Update command line usage
 Meta-Update output and return values
 Meta-Update Tracing

Meta-Update - 16 - Script Samples

Run Time Environment

 Meta-Update runs in a Windows "Command Prompt" or UNIX shell. It is a simple process
that can be fired by workflow, batch files, shell scripts, even Meta-Update scripts.

Scripts and files developed and referenced may be interchanged freely between Window and
UNIX.

Meta-Update scripts can be run

➢ By users of the Job Console application
➢ manually in a shell or command prompt
➢ in a filter with the $PROCESS$ actions
➢ through a batch file or shell or Perl script
➢ through an OS scheduler like cron or at.

The runtime environment is the same for workflow, script, and manual operation.

The Meta-Update “bin” directory contains all required Meta-Update binaries or executable

programs, shared objects and dlls.

The Meta-Update bin directory should be on the path.

On Windows, the Meta-Update “bin” directory can be set in the PATH= environment

variable with:

Set PATH=D:\Apps\Sth\Meta-Update-5.56\;%PATH%

The program operates in a Command Prompt, or “DOS Box”, or as a fired process. Local
trace files are written in the current working directory by default.

On Solaris or Linux, the Meta-Update “bin” directoriy needs to be in the PATH= and

LD_LIBRARY_PATH= environment variables.

export PATH=/Apps/Sth/Meta-Update-5.77/bin/:$PATH

 export LD_LIBRARY_PATH=/Apps/Sth/Meta-Update-

5.77/bin/:$LD_LIBRARY_PATH

The program operates under any of the available shells or as a spawned or background
process. Local trace files are written in the current working directory when not specified.

Meta-Update - 17 - Script Samples

BMC Remedy API Versions

Meta-Update is generally compiled against the most current BMC supplied version of the
BMC Remedy API. The Meta-Update distribution includes all BMC supplied dlls that are
required.

The Meta-Update API version does not need to match the version of the servers that Meta-
Update establishes with. Meta-Update can establish multiple connections to different
Remedy servers of different releases.

Software Tool House always recommends that the highest API version is used no matter
what your server version is.

Meta-Update - 18 - Script Samples

ServiceNow API & System Properties

Meta-Update uses the current ServiceNow REST API. It uses libcurl to setup connections to
any ServiceNow instances.

The Meta-Update distribution includes all dlls that are required. See
https://github.com/curl/curl for libcurl information.

System Properties Changes recomended

ServiceNow, by default, will return all records for queries with invalid qualifications.

Some Meta-Update scriptrs accept query terms on the command line. A typo in a field name
will lead to all records satisfying the query and being processed by the script.

A specific System Property can be added that prevents this behaviour and returns zero
records for invalid query qualifications.

This is a very dangerous property to be missing by default. Any errors in any query
qualification text, such as mis-typed field names, will cause all records of the table to be
returned.

For example, a script to delete records based on a query argument can accidentally delete all
records if passed a mistyped field name.

The System Property to prevent this action and instead return zero records when a query
qualification is in error, is named: glide.invalid_query.returns_no_rows.

It must be set to true and the record created if missing from the sys_properties table.

Meta-Update, by default will check that this is set, and quit if not.

There is a command line argument that controls this behaviour and can be used to set this
value on each ServiceNow instance the script references. Each instance needs to be set for
Meta-Update to run against it, by default. It needs to be set once on each instance.

This argument can be specified on any run for each ServiceNow instance.

-snQryChk quit | set | ignore

quit is the default and causes Meta-Update to end with an error and

do no updates at all.
set will add the system property that returns no records on invalid

queries – a much safer option, and
ignore will check for this system property and only give a warning – a

very dangerous operation.

https://github.com/curl/curl

Meta-Update - 19 - Script Samples

There is also a sample script that can be used to create this record. Note that you must use
the above argument with ignore to run it..

SthMupd.exe samples\700-SN\900-SvrProp-set.ini Do

 -key glide.invalid_query.returns_no_rows

 -type boolean

 -val true

SthMupd.exe -SnQryChk set anyscript Do -anyarg 1

SthMupd.exe -snQryChk ignore anyscript Do -anyarg 1

You can also create this record manually using the ServiceNow interface. Simply create a
new record in sys_properties using name:

glide.invalid_query.returns_no_rows and value true.

Meta-Update - 20 - Script Samples

Program Versions

There are two versions of Meta-Update and bundled utilities with different names. One is
used for local tracing and the other includes tracing through a trace server. These programs
have different names. They are the same name in all operating systems:

 SthMupd.exe Local trace version

 SthMupdTrc.exe Trace server version

Logging is controlled by the Meta-Update –d switch in the same way across versions. See

The Command Line below for more information on the –d switch.

The local trace version always appends to a file named SthMupd.log in the current directory

unless the trace file is named with the –d switch.

With the Trace server version, traces are sent to the trace server. The trace server is
administered to record selected levels of traces and discard other levels. The trace server
version, needs both the –d switch, and the trace daemon set correctly for debugging traces to

be captured

The trace server must be running on the same machine as Meta-Update. Communication to
the trace server is with the standard message queue facility under Unix or with Named Pipes
under Windows.

If the Trace Server version of Meta-Update is run, and the trace server is not started, Meta-
Update will act as though the local trace version was run. That is: a file named
SthMupd.log in the current directory is appended to unless the trace file is named with the –

d switch.

More information can be found on the Trace facility in Server Tracing below, and the
document, The Common Trace facility.

Meta-Update - 21 - Script Samples

The License Key

You need a license key to run Meta-Update. Please see Licensing below for more
information on licensing Meta-Update and obtaining License Keys.

You can tell Meta-Update the license key in one of these ways:

 Use SthLic.cmd or SthLic.sh for convenience

 Code it on the command line with the -lic argument

 Code it in the script itself with [Main] License=

 Set an environment variable with it as done with SthLic.cmd and in the samples

The environment variable to be set is SthMupdLic. In the script, you can specify License= in

the [Main] section.

A utility is used to generate an SthLic.cmd Windows batch file, or SthLic.sh bash shell

script. This is a convenient way to set licensing, server and authentication parameters. It
also allows ARS User passwords to be encrypted. See SthLicUpd Maintenance Utility below.

Meta-Update - 22 - Script Samples

Environment Variables

Both Meta-Update and the BMC Remedy API can be affected by using Environment
Variables1. This section defines the Meta-Update environment variables and the values and
behaviours associated with them.

BMC Remedy documentation is the accurate source for documentation on the BMC API
environment variables. We summarize them here because they affect Meta-Update
behaviour.

Meta-Update environment variables are fully defined below:

Environment Variable Description

SthScriptPath A path-like environment variable for finding Meta-
Update scripts and files.

SthApiRetry Allows Meta-Update to retry API operations on any
BMC Remedy API errors or during server outages.

SthMupdLic Specifies the Meta-Update license key for the main
server.

BMC Remedy API environment variables are specified in the BMC provided documentation.
The usage of these variables may be changed at any time. This list is included for
convenience and because it affects and overrides Meta-Update behaviours. Validate all
usage of these variables with your Remedy documentation.

Environment Variable Description

ARAPILOGGING Generates two files in the current working directory of
the running Meta-Update process. Conflicts will occur
when multiple Meta-Update processes with this
environment variable are run.

ARTCPPORT Sets all connections TCP Port to the servers.
Overrides the Meta-Update Port= keyword which can

be different for different servers.

ARRPC Specifies a private RPC port for all server
connections.

Script Path Environment Variable

Scripts may be specified on the command line or may be found by searching an
SthScriptPath environment variable.

SthScriptPath is set the same way as PATH according to the OS that Meta-Update is running
on.

On Windows, one could set the script path like this:

1 “Environment variables are a set of dynamic named values that can affect the way running
processes will behave on a computer.” - Wikipedia

http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Computer_process
http://en.wikipedia.org/wiki/Environment_variable

Meta-Update - 23 - Script Samples

 set

SthScriptPath=E:\Projects\ITSM\Scripts;D:\Apps\STH\samples\;

On LINUX, one could set the path like so:

 export

SthScriptPath=/Projects/ITSM/Scripts/:/Apps/STH/samples:

Note the difference in the path and directory separators.

Subdirectories in the paths are not searched. However if the script passed to the command
line contains a relative path, that relative path will be checked against the SthScriptPath

and the first matching file will be opened.

API Retry Environment Variable

A Meta-Update job normally returns any errors received from the ARS server during any of its
API calls and cancels the single record it was processing. It would then continue with the
next record.

It is useful to protect the Meta-Update run from a server timeout, crash, or restart. Meta-
Update can retry some API calls to the server based on configurable ARERR codes, a
maximum number of retries, and a delay between retries.

The environment variable SthApiRetry= may be used to specify these retry settings.

Without this environment variable, all API calls that fail cause an error in Meta-Update that
can result in a record being lost, not found, or the Meta-Update job terminating before
processing all records of a query.

The SthApiRetry= string is either a single or multiple sets of three numbers:

 start_ARERR_number [- stop_ARERR_number]

Retries Delay

start_ARERR_number

[-

stop_ARERR_number

]

Single or ranges of ARERR numbers can be
specified.

Retries A Retry count of 0 means infinite number of

retries.
Delay The Delay is in seconds. A Delay of 0

means no delay.

The following example illustrates its use to protect against servers crashes and servers that
have timed out.

 set SthApiRetry=90-92 0 60 93 0 30

 export SthApiRetry=90-92 0 60 93 0 30

These examples retry API calls resulting in error 90, 91, 92, 93, retrying an infinite number of
times, with a 30 second delay on ARERR 93 (timeout due to busy server) and a 60 second
delay for ARERR 90, 91, 92.

Meta-Update - 24 - Script Samples

Note that for Query timeouts (94), retries will generally not resolve the problem. Instead use
the TimeOutLong= keyword of the [Main] section.

fs

License Environment variable

SthMupdLic = license-key

If this environment variable is defined, the license check is made against the value
associated.

This is primarily used on the server and also in high performance situations.

AnyVar = Value

Any environment variable may be used in a Meta-Update script. All defined environment
variables are referenced by the reserved tag, ENV. The field name is the environment variable

name.

Environment variables, like all other field names are case sensitive.

 Loop = String, Pth, ”;”, $ENV, PATH$

The above example loops for every directory in the PATH environment variable.

As another example, the environment variable, ArsGlobals = 5, could be used to load a

site-specific set of values and keys to other records.

LoadQ = Tag, Schema, ‘1’ = $ENV, ArsGlobals$

Meta-Update - 25 - Script Samples

The Command Line

A Meta-Update command at a minimum specifies the Meta-Update script and the starting
section within that script.

That script may require arguments and Meta-Update accepts built-in switches – for example
to run the debugger or increase logging detail.

Scripts can have named arguments that can be coded in any order before or after the script
and section.

>>> SthMupd.exe 090-SvrAdmin\220-SwLogs.ini Do –log tst1

I terminating successfully in 2 sec.

By convention, in this document and in our samples, script arguments are specified after the
script file and section name.

>>> SthMupd.exe 090-SvrAdmin\221-SwLogs.ini Do

E Line 28 - required argument -log not on command line; no

default specified

E . Function:

E . This is a Meta-Update script that switches the ARserver log

files

E .

E . Usage

E . SthMupd 221-SwLogs Do -log xxx

E . where xxx is a log file name without a

path

E . and without the .log

E . The path and ".log" are

configurable

E . in the script

E . Examples

E . SthMupd 221-SwLogs Do -log my

E . will set all log files to:

"/apps/bmc/ARSystem/db/my.log"

E .

E terminating unsuccessfully in 2 sec.

Meta-Update has a set of switches that may be specified on the command line. Each script
can also define a set of arguments that may be set on the command line or defaulted to a
value.

Entering the Meta-Update command with no arguments yields usage help. Entering the
Meta-Update command with the single –help switches yields more detailed help.

SthMupd.exe

SthMupd.exe -help | more

Switches

Entering the Meta-Update command with no arguments or the single -help switch yields

usage help.

SthMupd.exe

Meta-Update - 26 - Script Samples

SthMupd.exe | more

Logging
-d Specifies logging.

By itself, all specified full debugging logs to the default log file
with no ARS Server logging and no Debug2 logging.

--d As above but includes Debug2 logging and ignores any Trace
assignment commands in the script.

-q Inhibits echoing of specific logs to the console but does not
affect the logging file.

-v Verbose. Equivalent to –d:qas
All field structures, queries, and data values are logged.

Development switches
-e Single error mode.

Stops execution of the script when the first error is encountered.
-g Debugging more.

Enters the Meta-Update debugger.

Server switches

Note that servers and authentication may be specified on the command line, in
the script, or default to the environment variables set by the SthLic.cmd batch

file.
Defaults for the Main server when not coded on the command line or in the script
are the environment variables:

D
dD

ArsTyp ARS or SN for Remedy and ServiceNow

respectively

ArsSvrAdmin The server name or IP.

ArsPort The server port. Use of the port mapper is the
default and can be specified with zero.

ArsUsr The ARS or ServiceNow user that Meta-Update
will be running under. Note that this user
generally has administrator rights.

ArsPwd The encrypted or plain text password of the
ARS or ServiceNow user that Meta-Update will
be running under.

-ServerType

xxx
Specifies or overrides the main server type: ARS or SN
ARS Specified that the server is a Remedy server (default)

SN Specifies a ServiceNow instance URL
-server xxx Specified the main ARS server connect address or ServiceNow

instance URL.
May be an IP or machine name. May also point to a specific
server of a load-balanced server group or the load balancer
address.

Meta-Update - 27 - Script Samples

-port xxx Specified the main ARS server’s port number.
Zero is the default and indicates that the port mapper is used.
Not used for ServiceNow

-user xxx Specified the main ARS server’s or Admin’s ServiceNow login
user that Meta-Update will be running under.
Note that this user is generally an administrator.

-password xxx Specified the ARS or ServiceNow user’s password.
May be plain text or encrypted with SthLicUpd.cmd.

Other switches
-help Summary usage instructions.

Usage Help Text

Meta-Update Version 5.80 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2018 by Software Tool House Inc.

 www.softwaretoolhouse.com

Function:

 SthMupd runs a Meta-Update script at the specified section

 against a BMC Remedy Server and/or ServiceNow instance.

 See: http://www.softwaretoolhouse.com for the User's Guide and Licensing.

Synopsis:

 SthMupd [switches] script-file section [script-arguments]

 The script-file and section must follow each other.

 Switches and arguments have the form: -switch [value]

 The script can include named arguments which are specified by using the script's

 argument name as the switch followed by the value for that argument.

 The script should explain its usage when run with no switch arguments.

 script-file is the Meta-Update script to run; may be found in the path-like

 Environment Variable: SthScriptPath

 section a section to process in the script file ("Do" for samples)

 switches for logging; Warning: Produces large output and slows throughput.

 -d Full tracing into SthMupd.log with no '2' or ARS server tracing

 --d Full tracing like -d, plus: '2' and ignores script Trace commands

 -d:x,y,f Tracing: x specifies tracing levels: qsad2flp

 y ARS client tracing flags: fsap

 f is the tracing file name (local or Caution: global)

 -q,-quiet Quiet: inhibit all output to stdout (not log!)

 -v Verbose: same as -d:qsa

 switches for script development:

 -g Debug Mode: enter script debugger; "help" for commands.

 -e single Error: terminate job on first error (for script dev/test)

 switches for specifying [Main] server Note that servers must be licensed.

 Set defaults with SthLic.cmd

 -ServerType ARS | SN Server Type default: ENV, ArsTyp

 -server server Server default: ENV, ArsSvrAdmin

 ENV, ArsSvr

 -user user server's ARS user default: ENV, ArsUsr

 -password Enc:xxx ARS User's password default: ENV, ArsPwd

 -port port server's ARS Port or 0 default: ENV, ArsPort

 -locale locale[.charset] server's locale setting default: ENV, ArsLocale

 other switches

 -snQryChk set | quit | ignore check ServiceNow servers' sys_properties'

 glide.invalid_query.returns_no_rows setting

 default: quit

130719.518 i terminating successfully in 0 sec.

Meta-Update - 28 - Script Samples

In the local trace version, the –d switch causes a high level of tracing. This data is appended

to a file that will grow if not deleted occasionally. Without the –d, the file will still be continually

added to, but at a much reduced volume. Only Error, and other informational messages will
be written. See Tracing below for more information.

In the Trace Server version, the –d switch causes a lot of message traffic between Meta-

Update and the Trace daemon. The trace files are cycled through and do not grow beyond
the limits specified in the trace configuration. See Tracing for more information.

The –q switch indicates quiet operation. No messages will be echoed to the stdout or stderr

files at all. This includes all Error and Info messages as well as the copyright notice. These
messages will still appear in the logs.

The –n switch indicates a null operation. No database writes are performed but all queries

and loads are processed. The assignments are also processed and the updating data is
printed to the console. This may be useful when you are developing a new script file. Note
that with complex scripts, because no database writes are performed, references needed may
not exist.

The –e switch indicates a “single error” operation. The first error that occurs will stop the run.

Use this when developing new scripts.

Normally, a file or query is processed and sections that are launched may succeed or fail. If a
launched section fails, then the remaining records in the file or query continue to be
processed. Using the –e switch changes that behaviour so that the job ends when the first

error happens.

When developing scripts, this allows the developer to sort out each section in sequence
quickly.

The script-file parameter is the name of the file containing the Meta-Update controls and

the target record assignments. It must exist and read access must be permitted for the user
running Meta-Update.

The ArSvr, ArUsr, ArPwd, and, ArPort parameters will override similar parameters in the

Main section of the script file. If they are not coded in the assignment file, they are required
on the command line.

If ArSvr is coded, the ArUsr, ArPwd, are also required, and ArPort is required if the listed

server does not use Port Mapper. The command line arguments cause the equivalent script
file keywords to be overridden and ignored.

There is an encryption utility provided to encrypt ArsUsr passwords. Generally, one would set
these in the file and let the operating system’s file security prevent unauthorised access to
that file. This and encryption would keep the ARS User and password secure. In the script,
these may be set to environment variables or other references.

Script arguments are specified as a minus followed by the named argument. Any value
following that is considered the value of that argument. The script may specify defaults
(including NULL) and then that argument is not required. See [Main] Section and Arg –
Program Arguments.

Wrap long values in quotes according to your shell as needed.

Meta-Update - 29 - Script Samples

Program Return Values

The program returns a zero upon successful completion. If any errors occur, the program
returns 1. This value may be used in scripts to decide a course of action.

Errors and important informational messages are reported the trace file. They are also
echoed to stderr, generally the console.

stderr may be redirected. On UNIX and Windows, the syntax is the same:

 SthMupd.exe . . . 2>>errors.txt

Or
 SthMupd.exe . . . 2>errors.txt

The first command appends between runs. The second creates a new file each time.

This file may be examined with any ASCII editor such as Notepad, Word, vi… The format of
the trace messages are explained further in Tracing below.

Note that error messages are also always written to stderr, which is generally the console
window. If redirected as in the above example command invocations, Errors and Warnings
may be grep’d or find’d from this file. See Tracing below for more information.

Meta-Update - 30 - Script Samples

Program Output

Unless the –q switch is used, Informational, Warning, and Error messages are echoed to the
console. These messages tell you what section is working on what record and lists outputs to
ARS tables. These messages are also captured in the trace logs.

An example:

E:\Dta_wrk\ > SthMupd.exe AAA-Create-Launch.ini Do -p 426 429

Meta-Update Version 5.56 (x64) for ARS lib 8.1.2

 (c) Copyright 1996-2015 by Software Tool House Inc.

 www.softwaretoolhouse.com

153544.312 i [Do] One:

153544.312 i [Do] One: Launching: 1 of 2 [CreRec2] from @if("$Arg, Id2$" == "",

CreRec, CreRec2)

153544.781 W [Do] One: Schema= in file: AAA-Create-Launch.ini [CreRec2] Schema=

line: 103 is deprecated; ignored

153544.781 i [CreRec2] Qry: 1 of 3: A first record

153544.890 i [CreRec2] Qry: 1 of 3: Merged schema: _Test, Id: 000000000004474 OldId=

153544.921 i [CreRec2] Qry: 2 of 3: and now, only seconds lat

153544.968 i [CreRec2] Qry: 2 of 3: Merged schema: _Test, Id: 000000000004475 OldId=

153544.968 i [CreRec2] Qry: 3 of 3: A second entry made a few

153545.031 i [CreRec2] Qry: 3 of 3: Merged schema: _Test, Id: 000000000004476 OldId=

153545.031 i [CreRec2] Qry: eof 3 record OK; 0 records with errors; total: 3.

153545.031 i [Do] One: Launching: 2 of 2 [CopyRec2] from @if("$Arg, Id2$" == "",

CopyRec, CopyRec2)

153545.031 W [Do] One: Update0= in file: AAA-Create-Launch.ini [CopyRec2] Update0=

line: 98 is deprecated. Use AssignNew=

153545.031 i [CopyRec2] Qry: 1 of 3: A first record

153545.125 i [CopyRec2] Qry: 1 of 3: Merged schema: _Test, Id: 000000000004477

OldId=

153545.125 i [CopyRec2] Qry: 2 of 3: and now, only seconds lat

153545.187 i [CopyRec2] Qry: 2 of 3: Merged schema: _Test, Id: 000000000004478

OldId=

153545.187 i [CopyRec2] Qry: 3 of 3: A second entry made a few

153545.234 i [CopyRec2] Qry: eof 3 record OK; 0 records with errors; total: 3.

153545.234 i [Do] One: 1 record OK; 0 records with errors; total: 1.

153545.234 i Statistics:

153545.234 i Sections: 3

153545.234 i Maximum section depth: 2

153545.234 i Assignment Sections: 6

153545.234 i Singleton Sections: 1 errors: 0

153545.234 i Queries: 2

153545.234 i Query records: 6 errors: 0

153545.234 i Output Schemas: 0

153545.250 i Output Schema records: 6 created

153545.250 i Output Schema records: 0 updated (with 0 skipped)

153545.250 i Outputs OK: 6

153545.250 i Outputs Errors: 0

153545.250 i Outputs Aborts: 0

153545.250 i Input Errors: 0

153545.250 i terminating successfully in 1 sec.

E:\Dta_wrk\ >

Meta-Update - 31 - Script Samples

153544.312 i [Do] One:

153544.312 i [Do] One: Launching: 1 of 2 [CreRec2] from @if("$Arg, Id2$" == "",

CreRec, CreRec2)

153544.781 W [Do] One: Schema= in file: AAA-Create-Launch.ini [CreRec2] Schema=

line: 103 is deprecated; ignored

153544.781 i [CreRec2] Qry: 1 of 3: A first record

The 24h local time
to the millisecond.

Message type:
 E Error
 W Warning
 i Information

Control Section
being processed.

Section’s iteration type and
count, and for Loops, the
Loop type:
 One:

 Qry: n of m:

 Sql: n of m:

 Fle: rec n:

 Lp: n of m: Dry:

A script source file reference
giving the section, keyword,
and line number.

Each iteration shows data from the Query,
Sql, File, Loop record, row, or data. For
Queries, this is the Administrator
programmed, query results – generally the
Short Description field.

Meta-Update - 32 - Script Samples

Ideal Command Prompt Properties

Software Tool House recommends that for the convenience of the Meta-Update script
developer, the Command Prompt have a wider and deeper buffer and that Quick Edit mode
be set. This applies to the UNIX shell as well.

On Windows, click the Command Prompt Icon on the Title Bar, select Properties and ensure
that QuickEdit Mode is on and then increase your Buffer Size Width and Height.

In addition, we highly recommend that “Cygwin” be installed, and Meta-Update script
developers become familiar with it. There are numerous utilities that are especially useful for
handling large log files.

“Cygwin” provides open source LINUX-like utilities and shells for Windows. It is available at
www.cygwin.com

file:///C:/Users/W701/AppData/Roaming/Microsoft/Word/www.cygwin.com

Meta-Update - 33 - Script Samples

Tracing

Tracing can be controlled through the use of the –d switch. When a –d is specified with no
additional options, full Meta-Update tracing is turned on. With –d no ARS client tracing is

turned on.

With full tracing a great deal of data is generated. Without –d, only a very few messages will

be traced.

Tracing levels for both Meta-Update and ARS can be specified with the –d: switch options.

 -d : [fpd2as ,] [fsap] [, file]

The first set of letters specifies the Meta-Update tracing levels. A comma is used to separate
the Meta-Update levels and the ARS levels. The second set of letters specifies the ARS
client tracing level. A further comma separates these levels from a specific trace file name.

If a full tracing switch is specified, further switches may be specified as the next set of
parameters.

For Meta-Update tracing, the levels are specified with a single case sensitive character as
follows:

S Severe Severe error

E Error Error

W Warn Warning

A All Always like info but never masked out

R Run Run execution instance

 Script Processing These are on by default but may be turned off.

i Info Informational (on by default)

 Script Debugging These are echoed when selected with the -d

Q Qry ArQuery, Sql; all query strings

G Get ArGet all ArRecGet ids

U Put ArPut all ArRecPut ids etc

 Debugging settings These are never echoed.

 Caution:These generate masses of logs and can affect performance.

F Func Function entry and exit

d Dbg Debugging detailed debugging

2 Dbg2 Debugging lvl 2 more details yet

a Data Data data values: records, fields

s Struct Structure data Structures

l List Script listing and files are logged

For ARS tracing, the user id the Meta-Update signs on the update ARS server must be in the
Group that the ARS administrator has specified client side logging for in the Server
Information panels using the ARS Administrator tool.

The following options can be specified:

 s SQL logging
 f filter logging
 a API logging
 p Plug-in logging

Specifying any ARS tracing implies Meta-Update tracing of level 2.

Meta-Update - 34 - Script Samples

In the next example, we want the filter traces from ARS and the Meta-Update data traces.
This will show us what value each field had before the ARS submit, set, or merge call, as well
as the filter logs produced by that call.

 -d:a,f

In this example, we want complete tracing, including complete ARS tracing, and we want to
direct it to a specific file:

 -d:,sfap,d:\trc\my-script.log

This has no effect for ServiceNow sessions. Use a double minus d for all ServiceNow
transactions and transaction data. No capture of server logs is done.

Two Trace Versions
There are two versions of Meta-Update: one uses local tracing and produces a trace file in the
current working directory of where the program is run.

Local Tracing

The local trace file is called SthMupd.log unless a file name is specified on the –d switch.

SthMupd.log can be found in the current working directory of the Command Prompt or shell

where Meta-Update was run from.

This file is appended to with each execution of Meta-Update. SthMupd.log will continuously

grow in size. It is recommended that you delete the file before the next execution of Meta-
Update.

There is no locking mechanism for multiple instances of Meta-Update running simultaneously
in the same directory. This can happen when ARS workflow fires a Meta-Update process on
the server.

It is recommended that if Meta-Update will be used in workflow, or in multiple, concurrent
instances on a single machine, that the Trace server version be used. The Trace server must
be running.

For ad-hoc runs of Meta-Update from a client machine it may be more convenient to use the
local trace version.

When using the –d switch, a great deal of logging information may be written.

With or without full tracing, a file is created or appended to each Meta-Update is run. This file
will grow in size. It is the user’s responsibility to remove this file from time to time as
appropriate.

Meta-Update - 35 - Script Samples

Server Tracing

An alternative, communication based trace facility is available for high use applications. With
this server based trace facility, the machine administrator manages the detail of the
messages captured, and the size and number of trace files. Tracing is controlled
independently of any application using it.

All client binary (executable) names that have the server based tracing included are suffixed
with “Trc”. Meta-Update, for example, would be SthMupdTrc.exe.

If the trace daemon is not running, the same local trace file, SthMupd.log, is created or

appended to. .

The following binaries are supplied with the server based tracing facility.

 trcdaem.exe This is the trace server itself. It should be started automatically when

the machine starts.

 trcctl.exe This controls the trace daemon allowing the tracing levels to be set,

switching to the next generation of trace file, and shutting down the
trace server.

 trcecho.exe This utility adds records to the trace file and can be used in shell scripts

or Windows command files.

Note that Meta-Update must be invoked with a –d switch for any debug level traces to be sent

to the trace daemon. The trace daemon must also be set to capture the level of tracing
desired.

The trace daemon uses a configuration file to specify both communication parameters and file
handing and other trace daemon operational options.

Meta-Update - 36 - Script Samples

All trace clients, such as Meta-Update or SthMupdTrc.exe for example, need to access this

file to read the communication parameters. The location of this file is given by an
environment variable.

On UNIX the trace daemon uses the POSIX message queue facility. The daemon should be
run at a higher priority, or lower nice value, than any of its clients to prevent messages being
lost. Further, system parameters should be adjusted so that the message queuing is not a
performance bottleneck.

Under normal production usage (without the –d switch) very few messages are sent to the
trace daemon and so performance is not generally an issue.

On Windows, Name Pipes are used to implement the inter-process communication. This will
generally not require any system parameters to be changed to affect the performance. The
trace daemon performance is not generally a bottleneck on Windows systems.

Note that to capture a level of trace messages beyond the minimum, both:

✓ The trace daemon is configured to include the desired trace level, or by using the
trace control program. the desired trace level is on; and,

✓ The program will have been run with the –d switch specifying the desired trace level.

An environment variable is used by the trace daemon and all trace clients. This environment
variable specifies a trace configuration file. The environment variable can be set in Windows
as a system wide variable.

 Set TrcIni=c:\etc\conf\SthTrc.cfg

The configuration file must exist. It is an ASCII file (created with Notepad or vi for example)
and follows the format rules for a Meta-Update command file but with no section names. It
can have these variables:

Trace facility configuration file for sth-m3

file: e:\etc\conf\trace.ini

Environment variable must be defined system wide...

TrcIni=e:\etc\conf\trace.ini

QueueKey = e:\etc\conf\trace.ini

TraceFile = e:\trc\trace

GenMax = 99

RecMax = 500000

TrcLvl = dasfp2

TrcTme = 30

ErrLog = e:\trc\error.log

ScOpen = cmd /c trcerrm.cmd

QueueKey = is used on Unix platforms only. The message queue is opened using

the specified file’s i-node as the key. On Windows this parameter is
ignored.

TraceFile = specifies the fully qualified prefix for the trace files. The string specified

is suffixed with .xx where xx is the current open trace file.

Meta-Update - 37 - Script Samples

GenMax = specifies the maximum number of trace files to produce. Specifying 99,

for example, would mean that a maximum of 100 files named
e:\trc\trace.01, .02, .. .99 could exist at the same time. After trace.99 is
filled up, trace.01 will become the current file.

RecMax = specifies the maximum number of records per file. When this number

is reached, the trace file will be closed and the next trace file will be
opened.

TrcLvl = the starting trace level. See trcctl.exe for more information about the

levels and their meanings.

TrcTme = a normal trace client is presumed to live for a short time between

issuing traces. Long lived processes may have larger amounts of time
between traces. This specifies the maximum amount of time between
calls for the trace daemon to consider that the client program has failed
or been aborted without a proper shutdown. When this time is
reached, an error trace message will be added to the trace file and
client resources will be freed.

ErrLog = specifies a single file that will collect R and E messages. This file will

always grow. It is the administrators responsibility to remove the file on
occasion.

ScOpen = can be used to run a single command file or shell script. It is passed

the version number of the file just closed and the fully qualified file
name:

In the above example, when the trace switches (say it was on 19 and is
now on 20), a command will be run in the system as follows:

 cmd /c trcerrm.cmd 19 e:\trc\trace.19

See www.softwaretoolhouse.com for more details and for the Trace User document.

Trace Format

A trace record looks like this:

hhmmss.nnn f 0pid Prog text

The hhmmss.nnn is the time that the record was created by the application. Note that trace
records may appear out of sequence between applications but will never be out of sequence
for any one instance of an application. Note also that a single application may have two
instances running concurrently.

http://www.softwaretoolhouse.com/

Meta-Update - 38 - Script Samples

The f is the highest priority TrcLvl value on the Trc call that sent this trace message. Values
are as follows:

S Severe Severe error

E Error Error

W Warn Warning

A All Always like info but never masked out

R Run Run execution instance

 Script Processing These are on by default but may be turned off.

I Info Informational (on by default)

 Script Debugging These are echoed when selected with the -d

Q Qry ArQuery, Sql; all query strings

G Get ArGet all ArRecGet ids

U Put ArPut all ArRecPut ids etc

 Debugging settings These are never echoed.

 Caution:These generate masses of logs and can affect performance.

F Func Function entry and exit

d Dbg Debugging detailed debugging

2 Dbg2 Debugging lvl 2 more details yet

a Data Data data values: records, fields

s Struct Structure data Structures

The 0pid is the process identifier, in hexadecimal, of the process that generated the trace
message. This number can be used to select the trace records for a specific instance of a
specific application.

The Prog is the program name coded on the application’s TrcInit call. Each application that
uses the trace facility should document its use of the facility in its User’s Guide. You can use
this field to extract those records written by any one application.

The text is the actual text of the trace message and is entirely application dependent.

Meta-Update - 39 - Script Samples

Firing from Workflow

Meta-Update may be fired from workflow as Run Process or Set Fields $PROCESS$ filter or
active link.

When firing from workflow on the server, the environment is that of the ARS server process.
It is prudent to code a script or batch file in the workflow and then have that script or batch file
set up the environment for the run, invoke Meta-Update, and possibly do some termination
activities.

The environment generally includes a path to the executable and to any required shared
libraries or dlls, other environment variables, parameters, and the working directory.

As workflow is fired at independent times, it is possible for multiple copies of Meta-Update to
be running simultaneously. If so, the Server based tracing version is highly recommended to
properly serialise log files.

Meta-Update - 40 - Script Samples

Developing Scripts

Normal Meta-Update runs will report script errors with an ‘E’ level message echoed to the
console. That message will print the script file name, section, line number, and, if
appropriate, the keyword being processed.

114159.531 E [Do] [asg-init] AssignInit apply was aborted in file:

 FD-SupGrp-Ren.ini [asg-init] @Cmd= line: 74

Errors may be caused by different things:
 Syntax errors
 ARS reported errors such as unrecognised schema names or field names or labels
 LookUp or Load failures
 User Aborts

Meta-Update has several switches that will aid in script development which would normally
not be used in production runs.

-e single Error With this switch, any error in any section will stop the run.

We recommend you use this switch when you develop and
test scripts. You will generally not want it on production runs.

-v Verbose This prints all query qualifications and results to the console

and to the log file.

We recommend you use this switch when you develop and
test scripts. You will generally not want it on production runs.

-n null This switch prevents any ARS updates or creates.

This is only useful for the most simple of scripts as generally
launched sections depend on access to a previous sections
updated and reread record reference.

-d Logging: Debug This should not normally be needed. It is intended to be

used when using Meta-Update support. It provides complete
debug level information on the job and generates masses of
logs. You can also specify you want ARS client logging with
this switch. See Tracing above for more information.

-g Script Debugger This invokes the Meta-Update script debugger. The script

debugger allows you to set breakpoints and single step
though your script’s operation. You can get debugging help,
print your script, examine references, control breakpoints,
and resume normal execution.

See Script Debugging below for more information about
using the Meta-Update Script Debugger.

In this example, a script Abort= was set by an AssignInit= section that ensured there was

at least one matching Support Organisation.

Another example where a bad value is passed as a script argument:

E:\> SthMupd -v -e FD-SupGrp-Ren.ini Do -Org "Qelp Desk"

The –v switch echoes the

exact query qualifications
sent to the Remedy Server

The script issues several
“E” messages and then an
abort.

Meta-Update tells you the
script issued an Abort.

Meta-Update - 41 - Script Samples

Meta-Update Version 5.56 (x64) for ARS lib 8.1.2

 (c) Copyright 1996-2015 by Software Tool House Inc.

 www.softwaretoolhouse.com

114159.515 q [Do] QuerySql: Svr: sthv1

114159.515 q [Do] QuerySql: Qualification: : 0000: select count(*) from

CTM_Support_Group where Support_Organiza

114159.515 q [Do] QuerySql: Qualification: : 0040: tion = 'Qelp Desk'

114159.515 q [Do] QuerySql: returned 1 records of 1.

114159.515 i [Do] Msg: Found 0 records with: 'Support Organization' == "Qelp Desk"

114159.515 E [Do] Msg: The Support Organisation argument must match 1 or more records

of CTM:Support Group"

114159.515 E [Do] Msg: Please check the spelling of your command line argument."

114159.531 E [Do] Abort: ..aborting."

114159.531 E [Do] [asg-init] AssignInit apply was aborted in file: FD-SupGrp-Ren.ini

[asg-init] @Cmd= line: 74

114159.531 E IniRdo of FD-SupGrp-Ren.ini [Do] failed with 3 - ArPutIini: Parm error 3

114159.531 i Statistics:

114159.531 i Sections: 1

114159.531 i Maximum section depth: 1

114159.531 i Output Schemas: 0

114159.531 i Output Schema records: 0 created

114159.531 i Output Schema records: 0 updated (with 0 skipped)

114159.546 i Outputs OK: 0

114159.546 i Outputs Errors: 0

114159.546 i Outputs Aborts: 0

114159.546 i Input Errors: 0

114159.546 E error: some errors occurred. Check for errors above this message.

114159.546 E terminating unsuccessfully in 0 sec.

In this next example, the script file’s Query= at line 65 referenced a ReadServer tag which

was not defined as the script didn’t need use additional servers.

 Query = @Itsm6, User, User, V, Qry

E:\> SthMupd QQQ-TblRpt-User.ini Do sthv1 Demo -start 1 –max

10

Meta-Update Version 5.56 (x64) for ARS lib 8.1.2

 (c) Copyright 1996-2015 by Software Tool House Inc.
 www.softwaretoolhouse.com

113416.785 i [Do] One:

113416.785 i [Do] One: Launching: 1 of 1 [Do1]

113416.785 E [Do] One: FlIniFindCtl: Server Tag: Itsm6 not found

113416.785 E [Do] One: ArIiniQuery: FlIniRefFindCtl for Itsm6 failed at file: QQQ-

TblRpt-User.ini [Do1] Query= line: 65

113416.785 E [Do] One: ArPutIiniRinit: ArIiniQuery failed (rc=4) in file: QQQ-TblRpt-

User.ini [Do1] Query= line: 65

113416.785 E [Do] One: ArPutIiniRinit for Do1 returned 3 - ArPutIini: Parm error 3

113416.785 E [Do] One: ArPutIiniRdo: DoLaunch failed!

113416.801 E [Do] One: 0 record OK; 1 records with errors; total: 1.

113416.801 E IniRdo of QQQ-TblRpt-User.ini [Do] failed with 3 –

113416.801 i Statistics:

113416.801 i Sections: 1

113416.801 i Maximum section depth: 1

113416.801 i Singleton Sections: 1 errors: 0

113416.801 i Output Schemas: 0

113416.801 i Output Schema records: 0 created

113416.801 i Output Schema records: 0 updated (with 0 skipped)

113416.801 i Outputs OK: 0

113416.817 i Outputs Errors: 0

113416.817 i Outputs Aborts: 0

113416.817 i Input Errors: 0

113416.817 E error: some errors occurred. Check for errors above this message.

113416.817 E terminating unsuccessfully in 0 sec.

Source line in error.

Error: Server reference not
found.

Script line number in error.

Meta-Update - 42 - Script Samples

Sample Scripts

Meta-Update - 43 - Script Samples

Samples

The following sample scripts can be used as learning vehicles and are included in the
distribution package. The distribution may be downloaded from the web.

If you are new to Meta-Update scripting, start with less complex scripts. Some scripts are
copies of simpler scripts with an addition that adds functionality and complextity.

A good idea is to open the script in an editor and single step through the script using the
debugger.

Meta-Update - 44 - Script Samples

Samples List

Script What it does Com-
plexity
0 .. 10

What it shows

100-Path List all path elements 0 Loops through the Path
directories either listing them or
creating a CSV.

110-
PathFind

Find a file along a path
- like Linux’s “which”

1 Based on the above, shows use of
Until= and spawing a client
process.

000-
SvrInfo

Make a CSV of all Server Info
values

0 Simplist of scripts, Loops through
all fields of the predefined tag
ARS_INFO making a CSV.

000-
SvrInfo-
RdSvr

Make a CSV of all Server Info
values coming from a second
session

0 Identical to the above but also
shows opening two server
sessions.

005-
ArSchema

Make a CSV of a query (or all)
arschema tables with record
and workflow count columns

2 Demonstrates QuerySql= used in
an Iteration and in LookUp to
count records, Active Links,
Filters, Guides. Demonstrates
Output= to create a CSV report.

Will throw an error on a pre 7.1
ARS Server.

006-
ArSchema-
pre71

As above but for servers
without the “Viewname”
column.

3 As above, but includes a complex
bit of assignment logic to get an
SQL ViewName for servers before
7.1 when the column was added
to arschema.

Will also work against a post-7.1
server.

600-
ItsmVer

Display ITSM version 0 A script with no iterations doing a
single SQL Query as a LookUp.

610-App-
Prop

Make a CSV of
SHARE:Application_Properties
filling in the Display Only
Application Name column.

1 Simple Query on a single table
with a copy to a file and an
explicit assignment using an SQL
Query

Meta-Update - 45 - Script Samples

900-
SwLogs

Switch server logs files and
set DEBUG_MODE

1 Demonstrates an Update= and
an assignment to
AR_INFO, DEBUG_MODE.

Functions by writing to a vendor
form introduced in 7.1

910-
SvrInfo-set

Set a single Server Info value
(like Admin Mode)

0 Very powerful, yet the simplist of
scripts, only a single Assignment
statement setting the value
specified.

Caution: sets dynamic server
settings like admin mode, mid-
tier passwords, etc.

920-Svr-
HostName-
Change

Set all values needed on a
host name change or VM
replication. Use after all
config file changes are made
and the server is running.

2 Demonstrates Query=, Update=,
Launching a sequence of
disparate sections to update a
set of tables.

320-Tbl-
Bkp

Backup an ARS table to CSV
(with renamed attachments)

4 Query=, Output=, Loop= Fields.
Saving attachments to the file
system.

620-Tbl-
Rst

Restore from a CSV to an ARS
table t(with attachments)

4 Query=, Output=, Loop= Fields.
Saving attachments to the file
system.

340-Tbl-
All-Bkp

Backup a set of ARS tables to
a set CSV files (with renamed
attachments)

6 Query=, Output=, Loop= Fields.
Saving attachments to the file
system.

460-
Change-
Approve

Approve a set of Changes and
optionally move them to the
next stage.

6 Shows how a single script can run
off three different inputs: a file, a
list, or a query, then progress to
the same section to effect one or
two table updates.

Meta-Update - 46 - Script Samples

Descriptions

100-Path.ini

This simple script lists or creates a CSV of one column listing the paths in any path-like
environment variable..

What it does List all path elements.

What it shows Loops through all fields of the predefined tag ARS_INFO optionally

making a CSV.

Description This is a good beginners’ script. It does a string loop and shows how to

assign a double referenced value – the environment variable when
passed on the command.

The next script, 110-PathFind is an enhancement to this script that
finds a specific file along the path.

File location samples\000-Misc\

Command Line SthMupd 100-Path.ini Do -go

 [-var EnvVarName]

 [-fout output.csv]

110-PathFind.ini
This script is based on 100-Path.ini. It loops through the path strings and spawns a “dir” or
“ls” command to look for a file along that path. If it finds the file, it stops the loop.

What it does Find a file along a path.

What it shows Loops through all fields of the predefined tag ARS_INFO optionally

making a CSV.

Description Shows use of Until= to limit an iteration.

Shows spawing a client processes.

File location samples\000-Misc\

Command Line SthMupd 110-PathFind.ini Do

 -ptn file_name

 [-var EnvVarName]

Examples
 SthMupd 110-PathFind.ini Do -ptn SthMupd.exe

 SthMupd 110-PathFind.ini Do -ptn 500-Arch.ini

 -var SthScriptPath

Meta-Update - 47 - Script Samples

000-SvrInfo
This script loops through the path strings and spawns a “dir” or “ls” command to look for a file
along that path. If it finds the file, it stops the loop. It is useful to attach to a BMC ticket. The
script simply loops through the predefined AR_INFO Tag and outputs a CSV file.

What it does Creates a CSV of all AR_INFO fields (Server Information)..

What it shows Shows a “Fields Loop” on the

predefined tag AR_INFO. Shows a
two-column CSV output= creation.

Description This is a very simple beginners’

script. It does a fields loop and
Output= to create the CSV..

File location samples\ 003-SvrInfo\

Command Line SthMupd 000-SvrInfo.iniDo -outf MyServerInfo.csv

005-ArSchema – AR Schema Report
This simple script creates a CSV of the tables in an ARS server with additional columns for
and the number of records they contain.

What it does It does an SQL

Query the
arschema table,

does a few select
count(*) as
LookUps, and
generates a CSV.

What it shows Shows QuerySql=
used in an Iteration
and in LookUps to count records, Active Links, Filters, Guides.

Shows Output= to create a CSV file.

Description This is a very simple beginners’ script. It is a single section that

iterates through a QuerySql= and Output=.The Output=

assignments use QuerySql= in LookUp= for the counts.

File location samples\003-SvrInfo\

Command Line SthMupd 005-ArSchema.ini Do -outf arschema.csv

 SthMupd 005-ArSchema.ini Do -outf arschema-CS.csv
 -ptn ”BMC.CORE:%”

Meta-Update - 48 - Script Samples

006-ArSchema-pre71 – AR Schema Report
This is identical to the above but one of two sections are launched based on the ARS Server
version. When run against a pre ARS 7.1 server, the script itself assigned the “View Name”
field as the arschema table does not have that column.

What it does As 005-ArSchema.

What it shows Shows a complex
bit of assignment
logic to “calculate”
an SQL ViewName
depending on the
Remedy table
name, its Schema
Id, the server’s database type.

Description This script is identical to the above but the main section launches one

of two sections for pre and post ARS 7.1 and the ViewName value,
either from the arschema table (post 7.1) or derived in the script (pre
7.1).

 This script is not documented in the user guide and is left for the reader

to explore..

File location samples\003-SvrInfo\

Command Line SthMupd 006-ArSchema.ini Do -outf arschema.csv

 SthMupd 006-ArSchema.ini Do -outf arschema-CS.csv
 -ptn ”BMC.CORE:%”

600-ItsmVer
This simplest of scripts (5 lines) displays the ITSM Version by using a QuerySql= in a
LookUp.

What it does It does an SQL Query on SHARE:Application Properties for a specific

key / name and issues a message.

What it shows Shows a QuerySql= used in a LookUp and the simplest of Iteration
Sections, a single AssignInit.

Description This is a very simple beginners’ script. It is a single section that has
only an AssignInit= and that assignment sectionhas two

statements, one to LookUp the version, and one to display
it.Output=.The Output= assignments use QuerySql= in LookUp=

for the counts.

File location samples\003-SvrInfo\

Command Line SthMupd 600-ItsmVer.ini Do -go

Meta-Update - 49 - Script Samples

610-ItsmAppProp
Make a CSV of SHARE:Application_Properties filling in the Display Only Application Name
column..

What it does It does a Query on SHARE:Application Properties and does a cached

LookUp for the

Application
Name.

What it shows Shows a
Query= used
with an
Output= in an
iteration
section, and a
QuerySql=
used in a
LookUp in the Output assignments.

Description This script is a single section using a Query= and an Output= is a

common pattern. The assignments are copied from the queried record
into the output record and added fields are filled in with a LookUp.

File location samples\003-SvrInfo\

Command Line SthMupd 610-ItsmAppProp.ini Do -outf DevSvrAppPropt.csv

900-SwLogs
Turns off server logging, switches server logs files, and then sets DEBUG_MODE to turn on

logging again.

What it does It write to the vendor form introduced in ARS 7.1 that controls the

server settings to set all log files, and then sets DEBUG_MODE on

SHARE:Application Properties for a spefic key / name and issues a
message.

What it shows A simple Update= with no Query= and setting the AR_INFO,

DEBUG_MODE to control the server.

Description This is a very simple beginners’ script. It is a single section that has
only an AssignInit= and that assignment sectionhas two

statements, one to LookUp the version, and one to display
it.Output=.The Output= assignments use QuerySql= in LookUp=

for the counts.

File location samples\003-SvrInfo\

Command Line SthMupd 900-SwLogs.ini Do -off

 SthMupd 900-SwLogs.ini Do -log Bug41

Meta-Update - 50 - Script Samples

910-SvrInfo-set
Set a single Server Info value (like Admin Mode).

What it does Very powerful, yet the simplist of scripts: only a single Assignment

statement setting the value specified.

Caution: Sets dynamic server settings like admin mode, mid-tier passwords, etc.

What it shows A simple AssignInit= with a single assigment setting the AR_INFO

value specified.

Description This is a very simple beginners’ script. It is a single section that has
only an AssignInit= and that assignment section has one

assignment.

File location samples\003-SvrInfo\

Command Line SthMupd 910-SvrInfo-set.ini Do -key DEBUG_MODE

 -val 0

320-Tbl-Bkp
Backup an ARS table to a CSV file extracting all attachments to the file system using file
names based on Request IDs.

What it does A small, powerful script that saves the contents of an ARS table as a

CSV file. It also extracts any attachments by saving them with the
Request ID in the file name.

What it shows A simple Query= with a Output= creating as many CSV rows as

records returned from the Query. Also shows a Launch that does a
Loop= Fields through any non-null attachment fields.

Description This is only the next step above a beginners’ script. It has a single
section that performs the backup and Launches a second section to
extract any attachments.

File location samples\003-SvrInfo\

Command Line SthMupd 310-Tbl-Bkp.ini Do

 -schema ARS-Table-Name

 -Fout Output-CSV-file

 [-qry ”Query-Text”]

Meta-Update - 51 - Script Samples

620-Tbl-Rst
Backup an ARS table to a CSV file extracting all attachments to the file system using file
names based on Request IDs.

What it does A companion script to 320-Tbl-Bkp. Restoores contents of a CSV to a

table including any saved attachments.

What it shows A simple File= with an Update= creating/updating as many ARS

records as CSV rows. Also shows a Launch that does a Loop= Fields
through any non-null attachment fields.

Description This is only the next step above a beginners’ script. It has a single
section that performs the backup and Launches a second section to
extract any attachments.

File location samples\003-SvrInfo\

Command Line SthMupd 610-Tbl-Rst.ini Do

 -schema ARS-Table-Name

 -inpf Output-CSV-file

 [-qry ”Query-Text”]

340-Tbl-All-Bkp
Backup a set of ARS tables to a set of CSV files extracting all attachments to the file system
using file names based on Request IDs.

This is an enhancement to 320-Tbl-Bkp.

What it does A companion script to 320-Tbl-Bkp. Restoores contents of a CSV to a

table including any saved attachments.

What it shows A simple File= with an Update= creating/updating as many ARS

records as CSV rows. Also shows a Launch that does a Loop= Fields
through any non-null attachment fields.

Description This is only the next step above a beginners’ script. It has a single
section that performs the backup and Launches a second section to
extract any attachments.

File location samples\003-SvrInfo\

Command Line SthMupd 610-Tbl-Bkp.ini Do

 -schema ARS-Table-Name

 -Fout Output-CSV-file

 [-qry ”Query-Text”]

Meta-Update - 52 - Script Samples

460-Change-Approve
Input is a CSV of Changes that are approved. This script processes that input, ensuring
Changes are in Scheduled for Approval status, approving the changes, and optionally,
moving them to their next phase.

This was a Meta-Update Proof-of-Concept script that took a total of 4 hours to create. This
single script was a 100% ROI for Meta-Update.

What it does Processes an input CSV of Change Request numbers and approves

these Changes.

What it shows Shows how to make the same script operate on different inputs: in this

case, a File of Change Requests, a List, or a Query.

A File=, Loop=, or Query= are used to select the Changes that are

in Status: Scheduled for Approval.

The script throws an error if a selected Change is not in the correct
Status.

The script now calls a single section that adds or updates a signatire
record.

Then, it updates a Signature-Change Join record to validate the
process.

Description This script needs some configuration changes. It is provided as a
practical examples of batch processing possible with Meta-Update.

File location samples\430-ITSM-Chg\

Command Line SthMupd 460-Change-Approve.ini Do

 [-list CRQ000000000119 [, …]]

 [-Finp input-file]

 [-qry ”Query-Text”]

Meta-Update - 53 - Script Samples

Closed Ticket Duplicator A mail robot must not reopen a ticket, nor attach an

email to a closed ticket.

This ticket replicator creates a new ticket, with the
salient data from the old ticket, assigning it to the last
group that closed the old ticket, replicating all emails
and other associated records, and finally linking the
two tickets together for the GUI button.

This script demonstrates launching other sections so
that multiple tables are processed.

Real Customer
Problem

Development time:
three hours!

Meta-Update - 54 - Script Samples

Server data extract A single customer has many locations, people,

services, etc. This script is used to copy a single
customer’s data from production to development
for a single developer replacing any customer
contact information with the developer’s
information.

This was used in a large development team of a
bespoke telecoms client to facilitate development
and testing.

Server delta copy A simple script copying all changed records from

one server to another – say a read only,
reporting server..

Demonstrates using Read Servers, QuerySql,
Merge, Query, Update, the Copy assignment
command.

Ticket Creation Batch Command A simple script that creates a ticket accepting

different command line parameters.

This script demonstrates the simple creation of a
record based on command line arguments. It
introduces the common elements of a Meta-Update
script.

Real Customer
Problem

Development time:
three hours!

Development time:
one hour!

Development time:
one hour!

Meta-Update - 55 - Script Samples

100-Path

This script simply writes the components of the PATH environment variable to a single
column "CSV" file or to the console as messsages.

It performs no ARS queries or updates at all.

The script demonstrates:

 How to use a Loop = String statement.
 How to reference a value when the reference field is itself a reference.
 How to use Output= to create a CSV

Usage Instructions

. Function:

. This Meta-Update sample script simply lists each path in

the

 PATH or other, environment variable,

 optionally to a single column CSV file.

.

. Usage

. SthMupd 100-Path Do -go

. -outf out-file

. -var Path

.

. where -go is ignored but needed to avoid

 help display with no arguments

. -var can be any path-like ENV var,

. “SthScriptPath” for example

. -outf will cause output to a file

. (else console)

.

. Examples

. SthMupd 100-Path Do -outf c:MyDatapathinfo.txt

. SthMupd 100-Path Do

.

Sample Output

>> SthMupd.exe 100-Path.ini Do -go:

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

W [Do] Lp: 1 of 43: Msg: d:\Apps\Sth\Meta-Update\msch\

W [Do] Lp: 2 of 43: Msg: d:\Apps\Sth\Meta-Update\mdel\

W [Do] Lp: 43 of 43: Msg: C:\Program Files\Common

Files\Intel\WirelessCommon\

i Statistics:

i Sections: 1

i Maximum section depth: 1

i Loops: 1

i Loop values: 43 errors: 0

i terminating successfully in 2 sec.

Meta-Update - 56 - Script Samples

Development time:
under fifteen minutes!

Meta-Update is copyright (c) 1996-2017 by Software Tool House Inc.

www.softwaretoolhouse.com

This is a Meta-Update sample script.

File: 100-path.ini

[Main]

Main section gives script arguments and can override server info

Here, we'll use environment variable PATH or the one given

and loop through the entries in it.

Arg = go

Arg = var Default ""

Arg = outf Default ""

PrmReq = . Function:

PrmReq = . This Meta-Update script lists each path in the PATH

PrmReq = . environment variable, optionally to a sin

[Do]

AssignInit = Do-asgInit

Loop = String, &

 Spath, &

 "$CTL, PathSep$", &

 "V, str"

AssignPre = Do-asgPre

Launch = @if("$Arg, outf$" != "") Do-File

[Do-asgInit]

Set: V, str = "ENV, Xxx" if -var used or

Meta-Update is case sensitive

$ENV, Path$!= $ENV, PATH$

@Cmd = @if(! "Arg, var")

 @Cmd = @if("CTL, OS" == "UNIX")

 @Cmd = Ref, V, str, $ENV, PATH$

 @Cmd = else

 @Cmd = Ref, V, str, $ENV, Path$

 @Cmd = endif

@Cmd = else

 @Cmd = Ref, V, str, @val, ENV, Arg, var

@Cmd = endif

[Do-asgPre]

We simple issue a message here if we're not writing to a file

@Cmd = @if("$Arg, outf$" == "") &

 Msg, W, $Sp ath, Text$

Spath

,

[Do] is the "main entry
point" of the script.

V, str is set by our
AssignInit to either the PATH
or the given name.

We loop through the string
elements separated by a “;”
or “:”. These elements are
assigned to $SPath, Text$

in each loop’s iteration.

We only Output to a file
when requested.

Usage information.

We print a message here.

Spath,

Meta-Update - 57 - Script Samples

[Do-File]

We're writing to a file

Output = F, &

 File-Def, &

 $Arg, outf$

Assign = Do-File-asg

[Do-File-asg]

For the single output "record" we just have one field

Path = Spath, Text

[File-Def]

This defines the file as a single column CSV.

Type = Delimited, ",", FldHdr

Format = Csv

Fields = File-Def-Flds

[File-Def-Flds]

Path = $

Spath,

The file is defined as a single
column CSV.

We write the single value
which our Loop= seter the

PATH or the given name.

We only Output to a file
when requested.

Meta-Update - 58 - Script Samples

110-PathFind

This script is based on 100-Path.ini. It is enhanced to find a file along a Path.

An argument is added: the file to find. A client process is added: the “dir” or “ls” in the path
element. An Until= is added: to halt processing when the file is found.

It performs no ARS queries or updates at all.

The script demonstrates:

 How to use a Loop= String statement.

 How to reference a value when the reference field is itself a reference.
 How to use Until= to limit a section’s iteration

 How to use a Spawn reference command and process the results

Usage Instructions

Function:

. This Meta-Update sample script finds a file along a PATH or

. Path-like environment variable

.

. Usage

. SthMupd 110-PathFind Do -ptn file [-var "PATH"]

.

.

. where -ptn is a required file name

. -var is an optional Env variable to use

. default: Path

.

. Examples

. SthMupd 110-PathFind Do -ptn SthMupd.exe

. SthMupd 110-PathFind Do -ptn 500-Arch.ini -var SthScriptPath

.

Sample Output

>> SthMupd.exe 110-PathFind.ini Do -ptm SthMupd.exe

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

W [Do] Lp: 1 of 43: Spawn process returned 1 for: dir

d:\Apps\Sth\Meta-Update

\msch\msch_x64_a910_d_trc\mupd.exe

W [Do] Lp: 1 of 43: Spawn process returned 1 for:

 dir d:\Apps\Sth\Meta-Update\msch\SthMupd.exe

W [Do] Lp: 2 of 43: Spawn process returned 1 for:

 dir d:\Apps\Sth\Meta-Update\mdel\SthMupd.exe

i [Do] Lp: 3 of 43: Until= condition taken on iteration: 3 at

 110-PathFind.ini [Do] Until line: 61.

i [Do] Lp: 3 of 43: Msg: .

i [Do] Lp: 3 of 43: Msg: .

i [Do] Lp: 3 of 43: Msg: mupd.exe found in:

 d:\Apps\Sth\Meta-Update \SthMupd\

i [Do] Lp: 3 of 43: Msg: .

i [Do] Lp: 3 of 43: Msg: .

i Statistics:

i Sections: 1

i Maximum section depth: 1

Meta-Update - 59 - Script Samples

i Loops: 1

i Loop values: 3 errors: 0

i terminating successfully in 2 sec.

Meta-Update - 60 - Script Samples

Development time:
under fifteen minutes!
Development time:
under fifteen minutes!

Meta-Update is copyright (c) 1996-2017 by Software Tool House Inc.

www.softwaretoolhouse.com

This is a Meta-Update sample script.

File: 110-PathFind.ini

[Main]

Main section gives script arguments and can override server info

Arg = ptn

Arg = var Default ""

PrmReq = . Function:

PrmReq = . This Meta-Update script finds a file along a PATH or

PrmReq = . path-like environment variable.

[Do]

AssignInit = Do-asgInit

Loop = String, &

 Spath, &

 "$CTL, PathSep$", &

 "V, str"

Until = @if(! "V, rc")

AssignPre = Do-asgPre

AssignTerm = Do-asgTerm

[Do-asgInit]

Set: V, str = "ENV, Xxx" if -var used or

$ENV, Path$ ($ENV, PATH$)

@Cmd = @if(! "Arg, var")

 @Cmd = @if("CTL, OS" == "UNIX")

 @Cmd = Ref, V, str, $ENV, PATH$

 @Cmd = else

 @Cmd = Ref, V, str, $ENV, Path$

 @Cmd = endif

@Cmd = else

 @Cmd = Ref, V, str, @val, ENV, Arg, var

@Cmd = endif

[Do-asgPre]

We spawn a “dir” or “ls” process to find the file

@Cmd = @if("CTL, OS" == "UNIX")

 @Cmd = Ref, V, Cmd, "ls -l $Spath, Text$/Arg, ptn"

@Cmd = else

 @Cmd = Ref, V, Cmd, "dir $Spath, Text$\\Arg, ptn"

@Cmd = endif

@Cmd = Ref, V, @spawn, V, Cmd

@Cmd = Ref, V, dir, $Spath, Text$

[Do-asgTerm]

@Cmd = Msg, I, .

@Cmd = @if("V, rc")

 @Cmd = Msg, I, Arg, ptn not found along ENV Arg, var

@Cmd = else

 @Cmd = Msg, I, Arg, ptn found in: V, dir

@Cmd = endif

[Do] is the "main entry
point" of the script.

V, str is set by our
AssignInit to either the PATH
or the given name.

We loop through the string
elements separated by a “;”
or “:”. These elements are
assigned to $SPath, Text$

in each loop’s iteration.

Usage information.

The Until= breaks the loop

when a file is found.

Spath,

This prints the results (found
or not) after the section
completes.

In each iteration, the
AssignPre spawns a “dir” or
“ls” command.

Spath,

Spath,

Spath, The Tag Spath, is not

available when the section
ends and must be saved.

Spawn, sets rc, stdout.

stderr in the Tag “V”.

Meta-Update - 61 - Script Samples

000-SvrInfo

This simple script outputs a CSV containing the fields and values of the predefined AR_INFO

Tag.

The AR_INFO Tag is automatically defined for every Meta-Update script and is the ARS

Server Information. You can use it to determine the database type, the server version, or any
of hunderds of dynamic server information.

This script is very useful for ansering a BMC Ticket’s query of “Server Environment”. Run the
script and attach the output file to the Incident, for complete and accurate information about
your server environment.

A single argument is needed to specify the output file. This script performs no ARS queries or
updates at all.

The script demonstrates:

 How to use a Loop= Fields statement.

 How to use an Output= to create a CSV

Usage Instructions

Function:

. This Meta-Update script makes a CSV from all the automatic

fields and values in the the automatic Tag: AR_INFO

. Output CSV file in the form:

. Name Value

. DB_TYPE SQL -- SQL Server

. VERSION 7.6.04 Build 002 201101141059

. ALLOW_GUESTS 1

. DB_NAME ARSystem

.

. Usage

. SthMupd 000-SvrInfo Do -outf out-file

. where -outf is the output CSV file name

 (overwritten)

.

. Examples

. SthMupd 000-SvrInfo Do -outf devsvrinfo.csv

Sample Output

>> SthMupd.exe 000-SvrInfo.ini Do -outf SvrDevInfo.csv

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

i FoDfInit: Opened file SvrDevInfo.csv for Output= of

 000-SvrInfo.ini [Fle] line: 59.

i [Do] Lp: 1 of 347: Fld: AR_INFO, DB_TYPE

i [Do] Lp: 2 of 347: Fld: AR_INFO, SERVER_LICENSE

i [Do] Lp: 3 of 347: Fld: AR_INFO, FIXED_LICENSE

i [Do] Lp: 4 of 347: Fld: AR_INFO, VERSION

i [Do] Lp: 5 of 347: Fld: AR_INFO, ALLOW_GUESTS

i [Do] Lp: 6 of 347: Fld: AR_INFO, USE_ETC_PASSWD

i [Do] Lp: 7 of 347: Fld: AR_INFO, XREF_PASSWORDS

i [Do] Lp: 8 of 347: Fld: AR_INFO, DEBUG_MODE

Meta-Update - 62 - Script Samples

i [Do] Lp: 346 of 347: Fld: AR_INFO, MAX_LOG_HISTORY

i [Do] Lp: 347 of 347: Fld: AR_INFO, SUPRESS_LOGOFF_SIGNALS i

[Do] Lp: eof 347 record OK; 0 records with errors; total: 347.

i Statistics:

i Sections: 1

i Maximum section depth: 1

i Loops: 1

i Loop values: 347 errors: 0

i terminating successfully in 2 sec.

Meta-Update - 63 - Script Samples

Development time:
under fifteen minutes!

S,
S,

#--

Meta-Update is copyright (c) 1996-2017 by Software Tool House Inc.

www.softwaretoolhouse.com

This Meta-Update script writes all the automatic AR_INFO

Tag fields and values to a CSV file.

#--

[Main]

This [Main] section gives script arguments and server info.

We only need the file name to create as an argument.

Arg = outf

PrmReq = . Function:

PrmReq = . This Meta-Update script makes a CSV from all the

PrmReq = . automatic fields in the automatic Tag: AR_INFO

#--

[Do]

We iterate through the "fields" of AR_INFO

- an automatically defined tag AR_INFO -

and for each, ouput a CSV row in the specified file.

Loop = Fields, S, AR_INFO

Output = F, Fle, $Arg, outf$

Assign = Do-asg

[Do-asg]

In this assignment section, each field

value pair is output into a single CSV row

Name = S, FieldName

Value = S, Value

[Fle]

This defines the output CSV file with two fields

Type = Delimited, ",", FldHdr

Fields = Fle-Flds

Format = Csv

[Fle-Flds]

Name = $

Value = $

A single argument is
required: the name of the
output file.

The Loop= iterates through

all the fields of AR_INFO
assigning FieldName and

Value to Tag, “S”

Output= uses the argument

to create a CSV file and the
assignments simply use the
Loop= Tag, “S”.

Usage information.

This defines the output file
as a CSV of two columns

Meta-Update - 64 - Script Samples

005-ArSchema

This beginner’s script creates a CSV of the tables in an ARS server with additional columns
for and the number of records they contain.

It does a QuerySql= on the arschema table with an Output= in the same section. The

Output= column assignments also use QuerySql= to get counts.

The script demonstrates:

 How to use a QuerySql= statement.

 How to use an Output= to create a CSV

 How to use QuerySql= in LookUp assignments

Usage Instructions

. Function:

. Produces a report of tables, number of records,and various

. workflow counts from arschema

.

. Usage: 005-ArSchema Do -fout output_file_name -ptn "ptn"

.

. where fout is the output file name

. ptn if entered, selects only some table names

. Default "%"

.

. Note: You may set an alternate CSV separator with the

environment

. variable: SthCsvSep.

. For example, to set a semi-colon:

.

. set SthCsvSep=;

.

. Examples

. 005-ArSchema.ini Do -fout ArSchRpt-all.csv

. 005-ArSchema.ini Do -fout ArSchRpt-CI.csv

 -ptn "BMC.CORE:%"

.

Sample Output

>> SthMupd.exe 005-ArSchema.ini Do -outf SvrDevInfo.csv

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

i [Do] One:Opened file cent-arschema.csv for Output=

 in 005-ArSchema.ini [F-out] line: 238.

i [DoV] Sql: 1 of 3849: PDL:SLIInterface_Create,457

i [DoV] Sql: 2 of 3849: PDL:SoftwareLibraryItem,458

i [DoV] Sql: 3 of 3849: PDL:SoftwareLibraryItemSearch,459

i [DoV] Sql: eof 3849 record OK; 0 records with errors;

i [Do] One: 1 record OK; 0 records with errors; total: 1.

i Statistics:

i Sections: 2

i Maximum section depth: 2

i SQL queries: 1

i SQL records: 3849 errors: 0

Meta-Update - 65 - Script Samples

Meta-Update - 66 - Script Samples

Usage Instructions

QuerySql results can be

referenced by number, like
BMC Remedy, or, as a set of
fields with interpretations
applied as in [ArSchV]

Script entry point. Issues a
QuerySql for all regular

forms in arschema possibly

with a where clause.

The AssignInit sets a

where clause for the
QuerySql=

Output= in the same section

that iterates, adds one row
each iteration.

The Output= assignments

reference the SQL results by
position or name.

SchemaTypeText has an

interpretation in the OupPut=

file definition: [F-out]

Development time:
under fifteen minutes!

Meta-Update is copyright 1996-2017 by Software Tool House Inc.

File: 005-ArSchema.ini

Meta-Update sample script.

Shows QuerySql=, Output=, QuerySql= in

LookUps, regex pattern splitting

#--

[Main]

The main section gives sign-on info and declares

script arguments required and usage info.$

Arg = fout

Arg = Ptn Default "%"

PrmReq = 1, . Function:

PrmReq = . Produces a CSV from arschema of

PrmReq = . tables, counts of records and workflow

#--

[Do]

We simply do a QuerySql= and an Output=

with an AssignInit to set the QuerySql text

AssignInit = asg-Init

QuerySql = Tbl, ArSchV, &

 select &

 name, schemaid, schematype, &

 nextid, nextfieldid, maxstate.. &

 viewname, timestamp &

 from arschema &

 $Ptn, Qual$

Output = F, F-out, $Arg, fout$

Assign = asg-CsvRow

[asg-Init]

A where clause to ”” or “where name like ‘Arg, Ptn’”

@Cmd = Ref, Ptn, Qual, ""

@Cmd = @if("Arg, Ptn" != "") &

 Ref, Ptn, Qual, "where name like 'Arg, Ptn'"

#[asg-CsvRow]

if the table is a Join or Regular, we will

assign a record count via an SQL LookUp

Name = Tbl, name

SQL_Name = V, name_sql

SchemaId = Tbl, 02

SchemaType = Tbl, schematype

SchemaTypeText = Tbl, schematype

NumFields = Tbl, 04

NextId = Tbl, nextid

Tbl,

Ptn,

Ptn,

Ptn,

Tbl,

Tbl,
Tbl,
Tbl,

Tbl,
Tbl,

Meta-Update - 67 - Script Samples

Only on Reguar and Join
statements will this LookUp

and QuerySql= be done.

The time field is interpreted
by the field declaration to be
a Remedy timespamp field.

QuerySql results are

interpreted into fields be a
Field section such as
[ArSchV]

NextFieldId = Tbl, 06

MaxStateNums = Tbl, 07

Records = @if("$Tbl, schematype$" == 1 || &

 "$Tbl, schematype$" == 2) &

 @LookUp, GetRecCount, &

 $Tbl, viewname$

Time = Tbl, time

wfActiveLinks = @LookUp, LkpAL, $Tbl, sch

wfActiveLinksPri = @LookUp, LkpALp, $Tbl, sch

wfFilters = @LookUp, LkpF, $Tbl, schemaid$

#--

[F-out]

Type = Delimited, "$Cfg, CsvSep$", FldHdr

Format = Excel

Field = F-out-Fld

[F-out-Fld]

These are the CSV file's fields

Name = $

SchemaId = $

SchemaType = $

SchemaTypeText = $ Subst /0/Null/ &

 Subst /1/Regular/ &

 Subst /2/Join/ &

 Subst /3/View/ &

 Subst /4/Dialog/ &

 Subst /5/Vendor/

#--

[ArSchV]

name = $

schemaid = $

schematype = $

time = $ Date: epoch

#--

#- Work-flow count lookups

All given schema id (not name!)

[LkpAL]

QuerySql = qAL, &

 @na, &

 select count(*) from actlink_mapping &

 where schemaId = $CTL, LookUp_Src$

QuerySqlTarget = $qAL, 1$

[LkpALp]

QuerySql = qALp, &

 @na, &

 select count(*) from actlink_mapping &

 where schemaId = $CTL, LookUp_Src$ &

 and objindex = 0

QuerySqlTarget = $qALp, 1$

These LookUps do a

QuerySql that returns a
select count(*)

After assignments but
before output and values in
this column will have these
character substitutions
applied.

[F-out]defines the output

file – columns and automatic
transformations

Each LookUps is called with

a SchemaId and does q

QuerySql= returning one

row and one column: a
select count(*)

Tbl,
Tbl,

Tbl,

Tbl,

Tbl,

Tbl,

Tbl,

Meta-Update - 68 - Script Samples

600-ItsmVer

This simple script outputs a message with the version of ITSM running on the server.

The section has a single assignment section and no iteration at all. That assignment section
assigns the ITSM version through a QuerySql= LookUp on: SHARE:Application_Properties

A single argument is needed to prevent the Usage information display.

The script demonstrates:

 How to use a simple AssignInit in a useful script..

 How to use an QuerySql= to assign a value

Usage Instructions

Function:

. This is a Meta-Update script that reports the ITSM version

.

. Usage

. SthMupd 600-ItsmVer Do -go

. where -go is required but ignored

.

. Examples

. SthMupd 600-ItsmVer Do -go

..

Sample Output

>> SthMupd.exe 600-ItsmVer.ini Do -go

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

i FoDfInit: Opened file SvrDevInfo.csv for Output= of

 000-SvrInfo.ini [Fle] line: 59.

i [Do] Msg: .

i [Do] Msg: .

i [Do] Msg: ItsmVer: 8.1.00

i [Do] Msg: .

i [Do] Msg: .

i [Do] One:

i [Do] One: 1 record OK; 0 records with errors; total: 1.

i Statistics:

i Sections: 1

i Maximum section depth: 1

i Singleton Sections: 1 errors: 0

i terminating successfully in 1 sec.

Meta-Update - 69 - Script Samples

Usage Instructions

$V, ItsmVer$ is simply used

in our message.

Sets $V, ItsmVer$ through

a QuerySql= LookUp.

The AssignInit does all the

work. It uses a LookUp to
get the ITSM Version and
then issues a message with
it.

The LookUp uses a

QuerySql= to select a single

row in SHARE:Application
Properties

Development time:
under fifteen minutes!

Meta-Update is copyright 1996-2017 by Software Tool House Inc.

File: 005-ArSchema.ini

Meta-Update sample script.

Shows QuerySql=, Output=, QuerySql= in

LookUps, regex pattern splitting

#--

[Main]

The main section gives sign-on info and declares

script arguments required and usage info.

Arg = go

PrmReq = . Function:

PrmReq = . This Meta-Update script reports

PrmReq = . the ITSM version

PrmReq = .

#--

 [Do]

This has only an Initial Assignment section

AssignInit = Do-asgInit

[Do-asgInit]

In this assignment section, we use a LookUp to get the version

and then display it

@Cmd = Ref, V, ItsmVer,

 @LookUp,

 Lkp-Version, -dmy-

@Cmd = Msg, I, .

@Cmd = Msg, I, .

@Cmd = Msg, I, ItsmVer: $V, ItsmVer$

@Cmd = Msg, I, .

@Cmd = Msg, I, .

[Lkp-Version]

QuerySql = Qver, @na, &

 select property_value &

 from SHARE_Application_Properties &

 where Property_Name = 'Version' and &

 Application_GUID = (&

 select Application_GUID &

 from SHARE_Application_Properties &

 where Property_Name = 'Name' and &

 Property_Value = 'BMC Atrium CMDB' &

)

QuerySqlTarget = $Qver, 1$

V,

Qver,

,

V,

Qver,

,

Meta-Update - 70 - Script Samples

610-ItsmAppProp

This simple script makes a CSV of SHARE:Application_Properties filling in the Display Only
Application Name column.

The script demonstrates:

 How to use a simple AssignInit in a useful script..

 How to use an QuerySql= to assign a value

Usage Instructions

Function:

. This script makes a CSV of SHARE:Application_Properties

. effecting a LookUp to add the App Name column.

.

. Usage

. SthMupd 610-ItsmAppProp Do --outf csv-file

. where outf is the output CSV file

.

. Examples

. SthMupd 610-ItsmAppProp Do -outf DevAppProp.csv

.

Sample Output

>> SthMupd.exe 610-ItsmAppPropr.ini Do -outf DevAppProp.csv

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

i FoDfInit: Opened file DevAppProp.csv for Output= of

 610-ItsmAppProp.ini [Fle-Application_Properties]

 line: 71.

Qry: 1 of 305: DataLanguage 5 English

Qry: 2 of 305: LanguagePacks 5

en;fr;de;es;it;ko;ja;zh_CN;

Qry: 3 of 305: Name 5 Application Activity

System

Qry: 4 of 305: Version 5 8.1.00.000000

[Do] Qry: 304 of 305: Name 5 Task Management System

[Do] Qry: 305 of 305: Version 5 8.1.00.000000

[Do] Qry: 305 of 305: 305 record OK; 0 records with errors;

total: 305.

Statistics:

 Sections: 1

 Maximum section depth: 1

 Queries: 1

 Query records: 305 errors: 0

i terminating successfully in 4 sec.

Meta-Update - 71 - Script Samples

Meta-Update - 72 - Script Samples

The Query= processes all
records in the table.

Development time:
under fifteen minutes!

Meta-Update is copyright 1996-2017 by Software Tool House Inc.

File: 610-ItsmAppProp.ini

Meta-Update sample script.

Shows Query=, Output=, Copying fields, LookUps

#--

[Main]

Arg = go

PrmReq = . Function:

PrmReq = . This Meta-Update script makes a CSV of

PrmReq = . SHARE:Application_Properties

PrmReq = .

#--

[Do]

Query = Src, &

 SHARE:Application_Properties, &

 @sort(Application GUID, Property Name) &

 1=1

Output = Fle, &

 Fle-Application_Properties, &

 $Arg, outf$

Assign = Do-asg &

[Do-asg]

In this output CSV assignment, we copy the

SHARE:Application_Properties record

Application Name = @LookUp, Lkp-AppName, &

 $Src, Application GUID$

@Cmd = Copy, Src

#--

[Lkp-AppName]

Default = "Error: Property Name not found for $CTL, LookUp_Src$

Cache = 0

NoMatch = W, Default

QuerySql = AppNam @na, &

 select property_value &

 from SHARE_Application_Properties &

 where Application_GUID = '$CTL, LookUp_Src$' and &

 Property_Name = 'Name'

QuerySqlTarget = $AppName, 1$

[Fle-Application_Properties]

This "File Section" declares the output CSV file

Type = Delimited, ",", FldHdr

Format = Csv

Fields = Fle-Application_Properties-Fields

[Fle-Application_Properties-Fields]

@Cmd = Copy, SHARE:Application_Properties

Usage Instructions.

We set the Display Only
field, with a QuerySql=

LookUp.

Assignments are pretty
simple. The CSV has the
same named fields as the
form, we just copy them.

Because the Output=

follows the Query=, one row
of the CSV is written for
each Query= row returned.

The LookUp uses a

QuerySql= to select a single

row in SHARE:Application
Properties

Src,

AppName,

Src,

Src

AppName,

Using a Cache= saves

queries.

The Copy command copies
all fields from a schema.

Meta-Update - 73 - Script Samples

900-SwLogs

This sample can be used to control server logging. Use it to set all log files and turn logging
on and off..

The script demonstrates:

 How to use a simple Update= to set log files by writing to a vendor form introduced in

ARS 7.1
 How to set a special Tag, AR_INFO, DEBUG_MODE to control the server.

Usage Instructions

Function:

 . This Meta-Update script switches the ARserver log files and

. sets logging on or off by assigning DEBUG_MORE in AR_INFO

.

. Usage

. SthMupd 900-SwLogs.ini Do -off -log

. SthMupd 900-SwLogs ini Do -log log_file

. -dbg DebugModeValue

.

. where -off sets DEBUG_MODE to 0 (off);

 does NOT change log files

. Note: -log is a required arg but is ignored

. -log is a log file name without a path and extension

. Note: path, ".log" are configurable in the script

. -dbg a specific DEBUG_MODE value;

 the default is configured in the script

. Examples

. >> Turn logging off:

. SthMupd 900-SwLogs.ini Do -off

. >> Turn logging on and set log files to:

. >> "/apps/bmc/ARSystem/db/my.log"

. SthMupd 900-SwLogs.ini Do -log my

. >> Set all log files as above & turns logging off

. SthMupd 900-SwLogs.ini. Do -log my -dbg 0

..

Sample Output

>> SthMupd.exe 220-SwLogs.ini Do -off -log

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

i [Do] One:

i [Do] One: Launching: 1 of 1 [DoOn] from @if(! "Arg, off")

i [DoOn] One: Updated AR System Administration:

 Server Information, Id: 000000000000001

i Statistics:

i Output Schema records: 1 updated

i Outputs OK: 1

i Outputs Errors: 0

i terminating successfully in 1 sec.

Meta-Update - 74 - Script Samples

Usage Instructions.

We don’t do any more if -

off was specified.

The AssignInit turns

 off logging.

We update the only
record in the vendor
form added since 7.1.

The assignments set the
log files.

Development time:
under 30 minutes!

Meta-Update is copyright 1996-2018 by Software Tool House Inc.

File: 900-SwLogs.ini

Function: Set Server Logging and switch log files

[Main]

Arg = off Default 0

Arg = log

Arg = dbg Default “”

PrmReq = . Function:

PrmReq = . script switches the ARserver log

PrmReq = . files and sets logging on by

PrmReq = .

#--

[Do]

It does no Queries and so does a single record update to

a hard coded request id

AssignInit = asg-Cfg

AssignInit = Do-asgInit

Launch = @if(! "Arg, off") DoOn

[DoOn]

Update = PIOtst, &

 AR System Administration: Server Information, &

 '1' = "000000000000001"

Assign = Do-asg

AssignTerm = Do-asgTerm

[Do-asgInit]

turn debug_mmode Off unless already Off

@Cmd = @if("$AR_INFO, DEBUG_MODE$") &

 Ref, AR_INFO, DEBUG_MODE, 0

[Do-asgTerm]

set the DEBUG_MODE to turn tracing on now

make a debug_mode mask

@Cmd = @if("Arg, dbg")

 @Cmd = Ref, AR_INFO, DEBUG_MODE, Arg, dbg

@Cmd = else

 @Cmd = Ref, AR_INFO, DEBUG_MODE, $Cfg,

Dbg_Default$

@Cmd = endif

[Do-asg]

First, set full path passed log file

@Cmd = Ref, X, @na, @regex, &

 #(.*)[\\\\/](.*)#, Arg, log

@Cmd = @if("$X, @rc$")

 @Cmd = Ref, V, LogNm, Arg, log

@Cmd = else

 @Cmd = Ref, V, LogNm, "$Cfg, LogPth$$Arg, log$$Cfg, LogSfx$"

@Cmd = endif

apilogfile = V, LogNm

filterlogfile = V, LogNm

sqllogfile = V, LogNm

V,

V,

V,

V,

V,

The AssignTerm turns

on logging once the log
file names are set.

We adjust the passed
log file name by
prepending a configured
directory and suffixing a
configured extension
unless the passed
argument included
directory slashes.

Meta-Update - 75 - Script Samples

910-SvrInfo-set

This one line sample can be used to set ARS Server INFO parameters such as logging,
Admin Mode, Mid-Tier passwords.

The script demonstrates:

 How to use a simple AssignInit= to set a single AR_INFO value.

Usage Instructions

Function:

. Used to change dynamic server settings such as admin mode,

. logging, Midtier passwords, and so on.

.

. Writes to a single AR_INFO key with the supplied

. value to the current ARS server: ?????

.

. Run script 000-SvrInfo.ini to get current keys and values.

.

. Usage:

. SthMupd.exe 910-SvrInfo-set Do -key key -val val

.

. where:

. -key is a writable "Field Name" from the AR_INFO tag.

. -val is the new value that the key can accept

.

. Notes:

. Specifying non-writable key, or non-acceptable values cause

. script errors with no effects. For example, specifying

. -val "apple" for a -key DEBUG_MODE (-val must be an integer).

. Specifying acceptable but invalid values can cause errors in

. the running ARS Server. For example, specifying

. -val "/nodir/server_trace.log" will be accepted but fail later.

. Warnings:

. ./conf/ar.conf or .\confar.cfg is NOT updated!

.

. Examples

. SthMupd 910-SvrInfo-set Do -key API_LOG_FILE

 -val "/nodir/server_trace.log"

. sets a log file and turns on logging;

. log file failure if there is no directory /nodir.

. SthMupd 910-SvrInfo-set Do -key MID_TIER_PASSWD

. -val "arsystem"

. SthMupd 910-SvrInfo-set Do -key APP_SERVICE_PASSWD

. -val "arsystem"

Sample Output

>> SthMupd.exe 910-SvrInfo-set.ini Do -key DEBUG_MODE -val 0

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

i [Do] One:

i [Do] One: 1 record OK; 0 records with errors; total: 1.

i Statistics:

i Sections: 1

Meta-Update - 76 - Script Samples

Usage Instructions.

AR_INFO is a special tag.

When you assign to it, the
equivalent server info is set
on the server.

Two required arguments.

The AssignIni does all the

work – one assignment.

i Maximum section depth: 1

i Singleton Sections: 1 errors: 0

i terminating successfully in 1 sec.

Development time:
under five minutes!

Meta-Update is copyright 1996-2017 by Software Tool House Inc.

File: 910-SvrInfo-set.ini

Meta-Update sample script.

Shows a simple assignment

#--

[Main]

Arg = key

Arg = val

PrmReq = . Function:

PrmReq = . Changes dynamic server settings

PrmReq = . such as admin mode, logging,

PrmReq = . Midtier passwords, and so on.

#--

[Do]

AssignInit = Do-asg

[Do-asg]

@Cmd = Ref, AR_INFO, Arg, key, Arg, val AR_INFO

,

Meta-Update - 77 - Script Samples

460-Change-Approve

This samples moves ITSM Changes in Scheduled for Approval status to the next state by
Approving them.

It takes three different inputs:

 A comma separated list of Infrastructure Change ID
 A CSV file with a column called Infrastructure Change ID
 Any query on CHG:Infrastructure Change

This script processes the input, ensuring Changes are in Scheduled for Approval status,
approving the changes, and optionally, moving them to their next phase.

The script demonstrates:

 how to make a script operate
on different inputs and yet use
the same process.

 a File=, Loop=, or Query= are
used to select the Changes
that are in Status: Scheduled
for Approval.

 How to throw an error if a
selected Change is not in the
correct Status.

 The script now calls a single

section that adds or updates a
signatire record.

 Then, it updates a Signature-Change Join record to validate the process.

Usage Instructions

Function:

Meta-Update - 78 - Script Samples

. Function:

. We move Changes in Scheduled For Approval status

. through writes to AP:Signature (Override approver)

.

. Updates: AP:Signature

.

. Usage:

. One of three forms to select Changes:

. *** use only one of -inp, -qry, or, -list ***

.

. SthMupd 460-Change-Approve.ini Do -

. inp file_of_change_ids -go

. SthMupd 460-Change-Approve.ini Do

. -qry query on CHG:Infrastructure Change -go

. SthMupd 460-Change-Approve.ini Do

. -list list of Change IDs -go

. Warning:

. The argument -NextStage 1 will update the Change to move it

. from Scheduled to Implementation In Progress. This is NOT

. recommended as Merge will be used to avoid group permissions.

. Audit logs, etc, will not be create

.

. where

. -inp change_file A CSV file with a column called

. Infrastricture Change ID on row 1

. -qry query text A Query on CHG:Infrastructure Change

. -start nn -max nn with -qry a batching of records.

. default: 0, 0 (all)

. -list Change_IDs A comma separated list of

. Infrastructure Change IDs

.

. Examples

. SthMupd 460-Change-Approve.ini Do -go -inp change.scsv

. SthMupd 460-Change-Approve.ini Do -go

. -qry "'6' > \"04/12/2016\" and '6' < \"04/11/2016\""

. SthMupd 460-Change-Approve.ini Do -go

. -qry "'1' = \"CRQ000001000017\" or

. '1' < \"CRQ000001000012\""

. SthMupd 460-Change-Approve.ini Do -go

. -list "CRQ_CAL_1000011,CRQ_CAL_1000006"

.

Sample Output

>> SthMupd.exe 460-Change-Approve.ini Do

 -go -list CRQ000000000119 -NextStage

Meta-Update Version 5.74 (x64) for ARS lib 9.1.0

 (c) Copyright 1996-2017 by Software Tool House Inc.

 www.softwaretoolhouse.com

i [Do] One:

i [Do] One: Launching: 1 of 3 [Do-list]

 from @if("V, sec" == "list")Do-list

i [Do-list] Lp: 1 of 1: Str: CRQ000000000119

i [Do-list] Lp: 1 of 1: Launching: 1 of 1 [DoUpd]

 from @if("V, Do")DoUpd

i [DoUpd] One:

i [DoUpd] One: Updated schema: AP:Detail-Signature,

 Id:

000000000000349|000000000000433

Meta-Update - 79 - Script Samples

i [DoUpd] One: Launching: 1 of 1 [DoUpd-Chg]

 from @if("$Arg, NextStage$")DoUpd-Chg

i [DoUpd-Chg] Qry: 1 of 1: CRQ000000000119nullMupd

null

 Ben Chernynulltest change

i [DoUpd-Chg] Qry: 1 of 1: Merge OK- op:merge

 Schema = CHG:Infrastructure Change

 ID = CRQ000000000212 Old ID =

CRQ000000000212

i [DoUpd-Chg] Qry: 1 of 1: 1 record OK; 0 records with

errors

i [DoUpd] One: 1 record OK; 0 records with errors

i [Do-list] Lp: eof 1 record OK; 0 records with errors;

total: 1.

i [Do] One: 1 record OK; 0 records with errors; total: 1.

i Statistics:

i Sections: 4

i Maximum section depth: 4

i Assignment Sections: 2

i Singleton Sections: 2 errors: 0

i Queries: 1

i Query records: 1 errors: 0

i Loops: 1

i Loop values: 1 errors: 0

i Output Schema records: 2 updated (with 0

skipped)

i Outputs OK: 2

i terminating successfully in 8 sec.

Meta-Update - 80 - Script Samples

Usage Instructions.

Arguments are checked in
AssignInit=

Only one section is
Launched.

We want an IdLog CSV

created.

Development time:
under two hours!

Meta-Update is copyright 1996-2018 by Software Tool House Inc.

File: 460-Change-Approve.ini

Function: We process a query (| list|file) of changes in status

Scheduled For Approval and approve those changes

#--

[Main]

Arg = go

Arg = qry Default ""

Arg = inp Default ""

Arg = list Default ""

Arg = start Default 0

Arg = max Default 0

Arg = NextStage Default 0

PrmReq = . Function:

PrmReq = . We process a list or query of Change

PrmReq = . in cheduled For Approval approving

#--

[Do]

AssignInit = Do-asgInit

Launch = @if("V, sec" == "list") Do-list

Launch = @if("V, sec" == "qry") Do-qry

Launch = @if("V, sec" == "inp")

IdLog = IdLog &

 On All, &

 Fdef Fout-IdLog, &

 Fname $CTL, ScriptFx$-CTL, Pid-idlog.csv, &

 Fasg Fout-IdLog-asg

[Do-asgInit]

@Cmd = Ref, V, Err, ""

@Cmd = Ref, V, Msg, ""

@Cmd = Ref, V, Do, 0

@Cmd = Ref, V, sec, ""

@Cmd = @if("Arg, qry" && ! ("$Arg, list$" || "Arg, inp"))

 @Cmd = Ref, V, sec, qry

@Cmd = endif

@Cmd = @if("$Arg, list$" && ! ("Arg, qry" || "Arg, inp"))

 @Cmd = Ref, V, sec, list

@Cmd = endif

@Cmd = @if("Arg, inp" && ! ("Arg, qry" || "$Arg, list$"))

 @Cmd = Ref, V, sec, inp

@Cmd = endif

@Cmd = @if(! "$ V, sec$")

 @Cmd = Abort, E, ...Please specify one of &

 -inp, -list, or -qry

@Cmd = endif

Meta-Update - 81 - Script Samples

Set V, Chg from File=,

Loop=, or Query=.

Load Chg from Query=.

[Do-inp]

File = fSrc, &

 Fle-inp, &

 Arg, inp

AssignPre = Do-inp-asgPre

AssignPre = Do-asgPre

AssignPre = Do-asgPre2

Launch = @if("V, Do") DoUpd

[Do-inp-asgPre]

@Cmd = Ref, V, Chg, $fSrc, Infrastructure Change ID$

#--

[Do-list]

Loop = String, fSrc, ",", $Arg, list$

AssignPre = Do-list-asgPre

AssignPre = Do-asgPre

AssignPre = Do-asgPre2

Launch = @if("V, Do") DoUpd

[Do-list-asgPre]

@

@Cmd = Ref, V, Chg, $fSrc, Text$

#--

[Do-qry]

Query = Chg, &

 CHG:Infrastructure Change, &

 '7' = "Scheduled For Approval" and Arg, qry

QueryStart = $Arg, start$

QueryMax = Arg, max

AssignPre = Do-qry-asgPre

AssignPre = Do-asgPre2

Launch = @if("V, Do") DoUpd

[Do-qry-asgPre]

@Cmd = Ref, V, Err, ""

@Cmd = Ref, V, Msg, ""

@Cmd = Ref, V, Do, 0

@Cmd = Ref, V, Chg, $Chg, Infrastructure Change ID$

Meta-Update - 82 - Script Samples

Load Chg from Query=. in

LookUp for File= and
Loop=.

Throw errors is change was
not found or is in the wrong
status.

This is used by 2 of 3 above sections as a common asgPre to pick

up the change into the tag Chg from

V, Chg - loaded from a file or list

[Do-asgPre]

@Cmd = Ref, V, Err, ""

@Cmd = Ref, V, Msg, ""

@Cmd = Ref, V, Do, 0

@Cmd = Ref, V, gotChg, @LookUp, &

 Lkp-Chg, V, Chg

@Cmd = @if(! "$V, gotChg$")

 @Cmd = Ref, V, Err, Change not found.

 @Cmd = Ref, V, Msg, Change V, Chg not found.

 @Cmd = Abort, E, V, Err - V, Msg

@Cmd = else

 @Cmd = @if("$Chg, Change Request Status$" != &

 "Scheduled For Approval")

 @Cmd = Ref, V, Err, Change in wrong Status

 @Cmd = Ref, V, Msg, Change V, Chg not &

 inScheduled For Approval ($Chg, 7$)

 @Cmd = Abort, E, V, Err - V, Msg

 @Cmd = endif

@Cmd = endif

[Lkp-Chg]

Loads a CHG:Infrastructure Change into CHG

Default = ""

NoMatch = D, Default

Query = Chg, &

 CHG:Infrastructure Change, &

 'Infrastructure Change ID' = "$CTL, LookUp_Src$"

QueryTarget = $Chg, 1$

Meta-Update - 83 - Script Samples

Load ApDtl from Query=. in

LookUp using data from Chg.

Throw errors if not found.

Load ApSig from Query=. in

LookUp using data from Chg

and ApDtl.

Throw errors if not found.

[Do-asgPre2]

Used by all 3 above sections as a common asgPre

we have a loaded CHG:Infrastructure Change in Chg

We need to load a two more records here

1) AP:Detail in ApDtl

2) AP:Signature in ApSig

@Cmd = @if(! "V, Err")

 @Cmd = Ref, V, gotApDtl, @LookUp,

 Lkp-ApDtl, V, Chg

 @Cmd = @if(! "$V, gotApDtl$")

 @Cmd = Ref, V, Err, AP:Detail not found

 @Cmd = Ref, V, Msg, .Change V, Chg's &

 AP:Detail not found.

 @Cmd = Abort, E, V, Err - V, Msg
 @Cmd = else

 @Cmd = Ref, V, gotApSig, &
 @LookUp, &

 Lkp-ApSig, V, Chg

 @Cmd = @if(! "$V, gotApSig$")

 @Cmd = Ref, V, Err, AP:Signature not found

 @Cmd = Ref, V, Msg, .Change V, Chg's &

 AP:Signature for AP:Detail $ApDtl, 1$ not found.

 @Cmd = Abort, E, V, Err - V, Msg
 @Cmd = else

 @Cmd = Ref, V, Do, 1
 @Cmd = endif

 @Cmd = endif

@Cmd = endif

[Lkp-ApDtl]

Uses "Chg" - a Change in Waiting For Authorization to pick up the

single AP:Detail record that will need to be signed.

Default = ""

NoMatch = D, Default

Query = ApDtl, &
 AP:Detail, &

 'Application' = "CHG:Infrastructure Change" and &

 'Request' = "$Chg, 1$" and &

 'Process' = "$Chg, ApprovalProcessName$"

QueryTarget = $ApDtl, 1$

[Lkp-ApSig]

Uses "Chg" - a change record, and ApDtl, an AP:Detail record to

pick up the single AP:Signature record that will need to be signed.

Default = ""

NoMatch = D, Default

Query = ApSig, &

 AP:Signature, &

 'Approval Status' = "Pending" and &

 'Approval ID' = "$ApDtl, 1$"

QueryTarget = $ApSig, 1$

Meta-Update - 84 - Script Samples

We update a single record of a
Join form – with standard filter
workflow – not Merge.

Throw errors if not found.

We may need to update the
change to move it to the next
stage.

[DoUpd]

We add signatures to move this change

along and approve it. To add a

signature, we modify the AP:Detail-Signature join form

Updating the AP:Signature causes a change to the Change record.

But we need to update it still to move it to the next Stage

Input tags

Chg A CHG:Infrastructure Change in Status

ApDtl An AP:Detail record that this is

Update = UpdSig, &
 AP:Detail-Signature, &

 'Application' = "CHG:Infrastructure Change" and &

 'Request' = "$Chg, 1$" and &

 'Process' = "$ApDtl, Process$" and &

 'Approval ID' = "$ApDtl, 1$" and &

 'Status-Dtl' = "Pending" and &

 'Approval Status' = "Pending"

AssignNew = DoUpd-asg-new

Assign = DoUpd-asg

Launch = @if("$Arg, NextStage$") DoUpd-Chg

[DoUpd-asg-new]

#@Cmd = Abort, E, Join record not found: &

 '1' = "$ApDtl, 1$|$ApSig, 1$"

[DoUpd-asg]

Signature Method = Override

Approval Status = Approved

Approver Signature = Demo

Meta-Update - 85 - Script Samples

We update the same Change
record, this time using Merge

and inhibiting workflow.

Wait 5 seconds so Remedy
CAI can effect the Change.

Throw an error if Change in
wrong Status.

We need to update the change
to move it to the next stage.

Make assignments needed.

IdLog= File, Fields,

Assighnments

[DoUpd-Chg]

The Change has been updated to the Scheduled status

but we also want move the stage.

We need to wait as the Signature update causes

a Change Status update, but with a delay. For now, a hard

coded 5 secs using the gnu (sygwin) sleep (on path).

Finally, our user is unlikely to belong to the right group to

work on the change, so we will move it along by faking the

effects of the workflow (perhaps missing audit logs etc)

AssignInit = DoUpd-Chg-asgInit

Update = ChgUpd, &

 CHG:Infrastructure Change, &

 '179' = "$Chg, 179$"
Merge = Yes, NoWorkflow

Assign = DoUpdChg-asg

[DoUpd-Chg-asgInit]

@Cmd = Spawn, sleep 5s

[DoUpdChg-asg]

@Cmd = @if("$ChgUpd, Change Request Status$" != "Scheduled")

 @Cmd = Ref, V, Err, Update failed; Change is in wrong Status

 @Cmd = Ref, V, Msg, Change V, Chg not &

 Scheduled ($ChgUpd, 7$); Is delay (5s) enough?)
 @Cmd = Abort, E, V, Err - V,Msg

@Cmd = endif

Change Request Status = Implementation In Progress

CurrentStageNumber = 4

ChangeRequestStatusString = Implementation In Progress

Change Request Prev Status = Scheduled

#--

Do's IdLog file, our Err, Msg, standard stuff, and

some fields from the record

[Fout-IdLog]

Type = Delimited, ",", FldHdr

Format = Csv

Fields = Fout-IdLog-fields

[Fout-IdLog-fields]

Err = $

Msg = $

[Fout-IdLog-asg]

Err = V, Err

Msg = V, Msg

Meta-Update - 86 - Script Samples

Ticket Creation Batch Command

This is an invented script built as an example to help learn Meta-Update. The script is
untested and it must be noted that the script will need editing before being run in any reader’s
environment.

Requirements

We need a simple, easy to use, parameterized, ticket generator for our ARS Help Desk. We
want to be able to create new tickets so that we can, if desired, force an assignment to a
specific group.

We want to use this callable command in various ways:

➢ Remedy ARS workflow and escalations,
➢ Scheduled jobs through “at” or “cron”,
➢ Configured commands in other their network monitors
➢ Added as a last step of some of their bespoke software

The command would depend on the arguments given. Defaults would be assumed for all null
arguments.

❖ Requester Email or Requester login
If it contained an “@” it would be looked up in a people form as an email. Otherwise it
would be looked up as a login name.

❖ Subject The subject of the ticket.
❖ Description

The full textual description.
❖ Category If not supplied, use “Default”
❖ Type
❖ Item
❖ Assignment Group Only assign if supplied.

Meta-Update - 87 - Script Samples

Meta-Update solution

The Category, Type, and Item assignments are simply based on the passed arguments on an
individual basis. To make similar assignments on a hierarchical basis, simply use this
segment instead or the three individual Category, Type, Item assignments above:

[Main]

Server = Sth2

User = Demo

ArgNm = Subject

ArgNm = ReqSearch

ArgNm = Description

ArgNm = Category

ArgNm = Type

ArgNm = Item

ArgNm = AsgGrp

PrmReq = 2

[TT-New]

#Simply create a Ticket every time.

Schema = HPD:HelpDesk

Assign = Asg-New-TT

[Asg-New-TT]

Subject = Arg, Subject

Description = Arg, Description

@Cmd = @if(“$Arg, ReqSearch$ ==””)

 LoadQ = Req, &

 SHR:People, &

 ‘Login’ = “Default Requester”)

@Cmd = else

 @Cmd = @if(“$Arg, ReqSearch$ ~=”@”)

 LoadQ = Req, &

 SHR:People, &

 ‘Email’ = “Default Requester”)

 @Cmd = else

 LoadQ = Req, &

 SHR:People, &

 ‘Login’ = “Default Requester”)

 @Cmd = endif

@Cmd = endif

Requester Id = Req, 1

Requester Login = Req, Login

Category = @if(“$Arg, Category$ == “”, &

 “Default”, &

 “$Arg, Category$”)

Type = @if(“$Arg, Type$ == “”, &

 “Default”, &

 “$Arg, Type$”)

Item = @if(“$Arg, Item$ == “”, &

 “Default”, &

 “$Arg, Item$”)

Assignment Group = @if(“$Arg, AsgGrp$” != “”) &

 Arg, AsgGrp

Development time: one
hour!

Specifies that only 2
arguments are required and
usage info when not enough
arguments supplied.

Names the arguments

Simple assignment of
passed argument value

Load the requester record
into memory under the tag,
Req

Assignment of data from
loaded Requester record.

Assign either “Default” or
the supplied values.

Only make this assignment if
a value was supplied.

Simple command section
that always creates a single
record in the HelpDesk
schema

Meta-Update - 88 - Script Samples

@Cmd = @if(“$Arg, Category$ == “”)

 Category = “Default”

@Cmd = else

 Category = Arg, Category

 @Cmd = @if(“$Arg, Type$ == “”)

 Type = “Default”

 @Cmd = else

 Type = Arg, Type

 @Cmd = @if(“$Arg, Item$ == “”)

 Item = “Item”

 @Cmd = else

 Item = Arg, Item

 @Cmd = endif

 @Cmd = endif

@Cmd = endif

The PrmReq can be used to specify usage information as well as the required number of
arguments. The usage information is delivered when an insufficient number of arguments is
supplied on the command line. Note that passing a null value – “” – is still passing a value.
Named arguments not supplied on the command line contain the null value.

This example is equivalent to the above but will supply usage information when used
incorrectly.

PrmReq = 4, Usage:

PrmReq = . TT-New –p Subj, Desc, Req, Cat, Typ, Item, AsgGrp

PrmReq = . where

PrmReq = Subj is required and is the ticket short subject

PrmReq = Desc is required and is the long

PrmReq = Req is either the requester login or email

address

PrmReq = Default Requester assumed if null

PrmReq = Cat Category (Default if null)

PrmReq = Typ Type (Default if null)

PrmReq = Itm Item (Default if null)

PrmReq = AsgGrp is an assignment group or null

PrmReq = . Create a ticket and optionally assigns it to a group

Meta-Update - 89 - Script Samples

Meta-Update - 90 - Script Samples

Closed Ticket Replicator

This is taken from a customer solution. It has been modified to be used as a Meta-Update
sample. The script demonstrates how to launch other dependent command sections, how to
make assignments from multiple records, how to use the Copy assignment command.

Background

The customer had a series of Perl scripts to control ticket generation and filing emails with
tickets. This allowed a full email conversation between the ticket agent and ARS system and
the requester.

Sometimes a requester would reply to an email after it was closed. The customer’s business
process stated no further work could be done on a closed ticket.

As such, a mechanism would be needed to create a new ticket from the old ticket selecting
work history records and emails.

Requirements

A Perl callable ticket replicator was needed. It would create a new, open, assigned ticket,
containing the emails, the work history with a few extra generated records identifying the
email to the closed ticket. It would copy pertinent data from the old ticket.

The new ticket would be created assigned to the resolving group of the closed ticket.

The two tickets would be linked for a GUI facility to allow ticket chains to be followed. The
closed ticket would need to be updated with the new ticket’s id.

This image shows the schemas and records of a single ticket.

Meta-Update - 91 - Script Samples

The dashed lines in this image show the desired updated and created records:

Meta-Update - 92 - Script Samples

Meta-Update solution
``

Meta-Update solution

[Main]

Server = Sth2

User = Demo

ArgNm = TtIdClosed

ArgNm = IdLog

PrmReq = 2

[TT-Copy]

this section creates a Ticket every time.

Schema = TT-TroubleTicket

LoadQ = Src_TT, &

 TT-TroubleTicket, &

 ‘1’ = “$Arg, TT-IdClosed$”

Create = New_TT, &

 TT-TroubleTicket

Merge = Yes

Assign = asg-TT-New

Launch = TT-Orig-Upd,

Launch = TT-Email

Launch = TT-Hist-1, TT-Hist-2, &

 TT-Hist-3, TT-Hist-4, &

 TT-Hist-5

Launch = TT-New-Upd

[asg-TT-New]

Status = New

zTktIdClosed = Src_TT, 1

zTktIdClosedNew = $NULL$

@Cmd = @if("$Src_TT, Next Action$" != "")

 Next Action = "Old closed ticket actions:\n"

 Next Action = "==========================\n"

@Cmd = endif

Next Action = Src_TT, Next Action

Ticket Type = Problem

Priority = Medium

Severity = 4

Ticket Opened = $DATE$

Ticket Closed = $NULL$

Problem Started = $NULL$

Problem Fixed = $NULL$

Escalate when = $NULL$

The next cmd copies all non-assigned fields.

@Cmd = Copy, Src_TT, DupIgnore, CoreAssign, Skip: 1

Names two required
arguments.

The created record is loaded
into memory after
submission and other
sections are run to copy
dependent records.

Always creates one single
record in the HelpDesk
schema

Development time: three
hours!

The closed source TT is
loaded into memory from the
passed Id.

Merge API is used to inhibit
Submit filters.

Assignments for the new TT
some arbitrary values
(constants) and the
remaining set of fields from
the closed ticket

Meta-Update - 93 - Script Samples

[TT-Orig-Upd]

Update the original closed TT with the

Newly Opened TT ID

Query = UpdOrig_TT, &

 TT-TroubleTicket, &

 '1' = "$Arg, TT-IdClosed$"

Merge = Yes

Update = UpdOrig_TT

Assign = TT-Orig-Upd-1

[TT-Orig-Upd-1]

zTktIdClosedNew = New_TT, 1

Action Log = "Email received after closure; New TT created: "

Action Log = New_TT, 1

Action Log = "\n"

[TT-Email]

Schema = TT-Email

Query = Src_TT-E, TT-Email, &

 'Ticket-ID' = "$Src_TT, 1$"

Update = Upd_TT-E, TT-Email, &

 'Ticket-ID' = "$New_TT, 1$" AND &

 'Date Sent' = "$Src_TT-E, Date Sent$"

Assign = TT-EmailUpd

Update0 = TT-EmailUpd

Merge = AllowNull, SkipPatternMatch

Ticket-ID = New_TT, 1

@Cmd = Copy, Src_TT-E, DupIgnore, CoreAssign

The closed source ticket and
the newly created, open
ticket are in memory before
these sections are called.

This section links the new
TT on the old one using the
Merge API.

This section copies all the
source emails to the newly
created ticket. This is a
copy of records in a single
form. Merge is used to
prevent notifications.

The newly created ticket id is
assigned and all remaining
fields from the old email are
copied.

Meta-Update - 94 - Script Samples

The Main section

The PrmReq= specifies that three arguments are required. A better one might be:

TT-Copy, The Called Command Section.

The command section called to copy a ticket is: TT-Copy.

To call the command, either on the command line or within a shell script or batch file, one
could enter:

SthMupd.exe ./TT-Cpy.mus TT-Copy -p TKT000049 TKT000049 /tmp/..

TT-Copy has no Query=, QuerySql=, File= so it is executed exactly once.

The Load= keyword loads the closed source ticket. The data of this ticket can be referenced

with $Src_TT, field$. This can be used in subsequent queries or assignments.

The Create= keyword causes an ARS record to be submitted. This could have been an

Update= keyword which would have allowed different assignments for an update or a create
operation. An ARS query that selects exactly one or zero update records must be specified.

It loads the source ticket record which is always the last ticket closed in a chain of tickets.
That id is passed on the command line as the named argument, TT-Closed.

After the command section creates the new ticket, that new ticket is re-read so that all fields
have the current values, and the launches are processed in order.

Launching Other Command Sections.

Each launch allows a new command section to be processed. That command process has all
the preceding sections’ references available to it. It can query and iterate like any other
section.

Launch = TT-Orig-Upd,

Launch = TT-Email

Launch = TT-Hist-1, TT-Hist-2, &

 TT-Hist-3, TT-Hist-4, TT-Hist-5

Launch = TT-New-Upd

Command Section Overview

PrmReq = 3, TT-Closed-Copy.ini copies a closed TT to a new, unassigned TT

PrmReq = .

PrmReq = . usage

PrmReq = . SthMupd.exe TT-Closed-Copy.ini TT-Copy -p TT-ID-src IdLog

PrmReq = .

PrmReq = . where

PrmReq = . TT-ID-src Parm 1 the closed ticket's ID that will be copied

PrmReq = . IdLog Parm 2 the file name for the IdLog

PrmReq = .

PrmReq = . function

PrmReq = . Will create a new TT as a copy of the old one including all its

PrmReq = . previous emails but not its history records for which a few will

PrmReq = . be artificially generated.

PrmReq = . Will also update the source TT with the newly generated ID plus

PrmReq = . a text reference to the generation...

PrmReq = . The source TT must not have already been copied to a new TT.

PrmReq = .

Meta-Update - 95 - Script Samples

TT-Copy The called or main section. It executes only once
and creates a new ticket. It then launches, in
order, these other sections.

 TT-Orig-Upd Uses a Merge to add the new ticket id reference
to the old ticket.

 TT-Email Uses a Query= to copy all emails to the new
ticket.

 TT-Hist Uses a Query= to copy all the history records.
 TT-Hist-1, 2, ..5 Uses a Create= to create a few new history

records for the TT-Closed-Copy operation.
 TT-New-Upd

Meta-Update - 96 - Script Samples

Server Delta Copy

This script is created as a learning vehicle to demonstrate several Meta-Update statements.

Requirements

A reporting server must be kept in sync with a production server. The sync job is run on a 24
hour delay basis. The updated records are to be transferred based on the last modification
date. Request IDs are to be maintained. The subset of the tables to be kept synchronised is
given by an ASCII file. That file also specifies query text that can be appended to the
programmed modification date query.

The following is a sample file

Interestingly, multiple jobs can be simultaneously to take advantage of the ARS server’s
multi-threading. This could be extended to several machines. Each job would specify
independent sets of dependent tables.

Script Overview

The Main section will define the source server. It will also change the date into a format
suitable for an SQL query.

The called command section will process the passed CSV file. It will not make any outputs
itself, but instead, launch another command section.

That launched section, will in turn issue an SQL Query on the table named in the CSV and a
date with any optional query text appended.

That query section will actually do an SQL query to prevent ARS timeouts as generally the
modified by field is not indexed. It will iterate through that list updating any records it needs
to.

This Script Demonstrates

 Processing a CSV with a File=.
 Using an assignment section to prepare a query string.
 Using an assignment section to convert a date from a normal format to an integer for

an SQL query.
 Using a Read Server. In a LoadQ and a QuerySql.
 Specifying an Update query.
 Using the Copy assignment command.
 Using a Launch.

Tbl,TblSql,IdFld,ModFld,QueryText

SHR:People,shr_people,request_id,modified_on

HPD:HelpDesk,hpd_helpdesk,case_id_,modified_on

SHR:Audit,shr_audit,request_id,

’Schema 1’ = \”HPD:HelpDesk\”

SHR:Association,shr_association,request_id,

modified_on,’Schema 1’ = \”HPD:HelpDesk\”

Names five file columns.

Appended to programmed
query, isolates the Help
Desk associated records for
a run with this file.

The fifth value is null.

Meta-Update - 97 - Script Samples

Meta-Update script
``

[Main]

Server = Dev01

User = Demo

ReadServers = Main-Prod

ArgNm = inp-csv-fle

ArgNm = mod-date

AArgNm = idlog

PrmReq = 3

IdLog = $Arg, idlog$.log

[Main-Prod]

Tag = Prod

Server = Dev02-prod-copy

User = Demo

Port = 3201

[Fle-Tbl]

Type = Delimited, “,”,FldHdr

Format = Excel

Fields = Fle-Tbls-Flds

[Fle-Tbl-Flds]

Tbl = $ # table name in ARS

TblSql = $ # table name in SQL view

IdFld = $ # ‘1’ in SQL

ModFld = $ # ‘8’ in SQL

QueryText = $ # SQL query text

[SvrSync-Date]

Processes the passed CSV file of tables to synchronise.

File = Ftbls, &

 Fle-Tbl, , &

 $Arg, inp-csv-fle$”

AssignPre = asg-Mk-Qry

Launch = Tbl-Sync

[asg-Mk-Qry]

will append an “and” and any extra query text

supplied in the CSV row

@Cmd = Ref, Vars, Qry &

 $Ftbls, ModFld$ > $Arg, mod-date$

@Cmd = @if(“$Ftbls, QueryText$” != “”) &

 Ref, Vars, Qry $Vars, Qry$ AND ($Ftbls, QueryText$)

Names three arguments.

The file’s first record
contains the field names
which must match these
fields.

Specifies the script’s tag, ip
and login for the production
server.

Declares the format and field
name for the passed CSV
file.

This is the called section. It
iterates through the file’s
rows.

All arguments are required.

This makes an “and ..” string
if the CSV had an optional
QueryText value.

The AssignPre= section is

run after the next file record
is loaded but before any
Launches are processed.

Meta-Update - 98 - Script Samples

Script Detail

The [Main] section does these things:

1 Specifies three argument names with the ArgNm= keyword.

2 Specifies the file to be generated as the id log with the IdLog= keyword..

3 Says that all three arguments are required but does not give additional user help
text when those arguments are not specified on the command line.

4 Establishes the server and authentication parameters for the update server
5 Establish the server and authentication parameters to the source server through

the ReadServers= keyword. The value of that keyword is a section name which,

like the Main section gives server and authentication parameters for addition
servers. Note the Tag= keyword in the [Main-Prod] section. Queries will use

this tag - @Prod - to reference the addition server.

The Called Command Section

The [SvrSync-Date] section is specified on the command line and is the script “entry-point”.

The File= keyword says we will iterate through a columnar file. The [Fle-Tbl] section

specifies the attributes and fields of the file. Row one of the file contains the field names and
must match the fields specified in the CSV.

[Tbl-Sync]

Issues an SQL query to obtain the modified

record IDs, Loads the records and updates

them on the target server.

QuerySql = @Prod, &

 SqlLst, &

 @na, &

 select $Ftbls, IdField$ &

 from $Ftbls, TblSql $ &

 where $Vars, Qry$

LoadQ = @Prod, &

 Src, &

 $Ftbls, Tbl$, &

 ‘1’= “$SqlLst, 1$”

Update = Tgt, &

 $Ftbls, Tbl$, &

 ‘1’= “$SqlLst, 1$”

Merge = Yes, NoWorkflow

Assign = asg-Copy

AssignNew = asg-Copy

[asg-Copy]

@Cmd = Copy, Src, CoreAssign

This section has the CSV
row loaded and does the rest
of the work by issuing the
SQL Query on the source
server for the modified
request ids, loading the
record, and updating the
record on the target server.

This section copies the
source record’s fields
including core fields.

Meta-Update - 99 - Script Samples

 The AssignPre= allows us to build the select SQL query for the modified date using the fields

as specified in the file row and the optional query text also specified in the file row.

The first assignment of [asg-Mk-Qry] makes the modification date query text for the SQL

statement using the modification field name specified in the CSV file for this table and the
time argument passed on the command line. This is set in tag “Vars”, field “Qry”.

If the CSV query text was non-null, the same string is appended with “and (..)” using the
supplied query text.

Now that the SQL query string has been made, the section launches the actual worker
section [Tbl-Sync] to copy the modified records. This section has no output.

The Launched Section

Section [Tbl-Sync] is launched once for each table / row in the passed configuration file row.

That row is in memory when this launched section is invoked. In addition, a select Query
string has been created.

This section issues a select to retrieve the ids of the modified records for the given table. It
does this with the QuerySql= keyword, specifying the @Prod server tag. The @na says that

we will not name or edit any of the columns returned by the select statement, instead referring
to them by their column numbers.

We iterate through the set of Request Ids returned by the select. During each iteration, we
load the source record from the source server with the LoadQ= keyword, and issue the

Update= to create the same record on the target server with the same request id as in the

source server. That Update or Create is performed using the Merge API and no filters are
fired – including filters set to fire or Megre.

The Assign= and AssignNew= sections are the same and simply issue the Copy command to

copy all source fields including attachments and core fields into the target record, updating or
creating that record,

Meta-Update - 100 - Script Samples

Meta-Update - 101 - Script Samples

ARS Table Backup and Restore

There are two scripts in this sample, one to back up a table and the other to restore a table.

To back up any ARS table, run the SvTbl.ini script passing as arguments, the table name, and
a backup file prefix. The restore script will take as input the same table name and same file
prefix.

The backup script will generate these files:

 a single csv containing all data from each field of the passed table
 if and only if there are attachment fields in that table, a CSV of the field names and

field ids for these attachment fields
 a file prefixed by the passed prefix for each attachment.

The restore script will process these files as a set:

 a single csv containing all data from each field of the passed table
 if the attachment fields CSV exists, will read these attachment fields and ids into a

script array
 if there are attachment fields, and the data CSV indicates a non-null attachment, a file

saved by the backup script will update the attachment content and have the original
attachment name.

This script introduces more complex features of Meta-Update. The script demonstrates:
 Query=, Output=
 Field Loops
 Output files based on schemas
 Schemas and Queries passed as arguments
 extracting and loading attachments

Running the script.

The package is in the distribution and may also be downloaded from the script library.

The package contains a def file for the form _Test. It also contains data saved by the sample
save script that can be used to populate the _Test table.

To validate these scripts, simply run the backup against a single record, generate a report of
all data from this record, delete the record, run the restore, generate a second report from this

http://www.softwaretoolhouse.com/product/SthMupd/scriptlib

Meta-Update - 102 - Script Samples

record, and, do a difference of the two reports. There should be no differences between the
two reports.

SthMupd SvTbl.ini Do -p _Test test "'1' = \"000000000000001\""

SthMqry -f –S _Test “’1’ = \”000000000000001\”” > rpt-before.txt

SthMdel _Test "'1' = \"000000000000001\""

SthMupd LdTbl.ini Do -p _Test test

SthMqry -f –S _Test “’1’ = \”000000000000001\”” > rpt-after.txt

diff rpt-before.txt rpt-after.txt

Backup Script Overview

[Do] is the main command section and issues the query against the passed table. Each

record is assigned to the tag Src.

An AssignInit is used to initialize script variables and formulate a default query string (1=1) if
the script was not passed a query qualification.

[Do] will output a record to a CSV for each record it processes. It will not change any

values other than encoding any embedded quotes and line feeds. The assignments to the
output CSV are handled by a single copy command. The file’s fields are also copied from the
passed table name.

[Do] will Launch [Sv-Att-Struct] once only.

[Sv-Att-Struct] creates a second CSV containing a list of all the Attachment fields

Field Names and IDs).

If there are no attachment fields, the CSV is not created. The single Launch is controlled
by the script variable $V, First$ which is initialized to TRUE and set to FALSE by an

AssignInit in [Sv-Att-Struct].

If there are any attachment fields, the CSV is created and a variable is set to indicate that
there are attachments that should be saved.

[Do] will Launch [Sv-Att] each record it processes if there are any attachment fields in the

table. This is controlled by the $V, gotAtt$ script variable which was set by [Sv-Att-
Struct]

[Sv-Att] iterates through all non-null attachment fields in the Src record. So, for any single

record it may iterate zero or more times.

[Sv-Att] has no record or file output, so all work is done in an AssignPre section which is called

after the Loop’s Tag is assigned on each iteration.

The assignment is a simple AttachmentSave command issued to save the attachment to
the file system. The file is named as follows:

 -prefix- ReqId – FieldId .att

Prefix is passed on the command line, ReqId is the request id field with any ‘|’ characters
(from Join forms) translated to ‘-‘. This is done through a simple regular expression used
for the side effect of allowing a Subst field specification.

Meta-Update - 103 - Script Samples

Server connectivity and
authentication set from
environment variables.

Meta-Update script

Meta-Update sample script file.

Meta-Update is copyright 1996-2011 by Software Tool House Inc.

File: SvTbl.ini

Part of the sample scripts for Meta-Update.

Two scripts used to save and restore any ARS tables' data.

This is the Save script. See LdTbl.ini for the restore script

This Save script will save all records into a single CSV

and attachments into files prefixed by the passed argument.

#--

[Main]

The main section gives sign-on info and declares

Script arguments required and usage info.

Server = $ ENV, ArsSvr $

Port = $ ENV, ArsPort $

User = $ ENV, ArsUsr $

Password = $ ENV, ArsPwd $

PrmReq = 2,. Function

PrmReq = . Two scripts used to save and restore ARS tables.

PrmReq = . This is the Save script.

PrmReq = .

PrmReq = . Usage:

PrmReq = . SvTbl.ini Do -p tbl outp [qry]

ArgNm = schema

ArgNm = F-out

ArgNm = qry

#--.do

[Do]

This is the main entry point and called routine. This section

reads through the given table creating the output CSV file

A Query is executed on the source table and the output file record

record is created using an assignment copy command.

Once only, a section that saves a CSV of attachment files is

launched. If there are attachment fields, a section is

launched each record to save those attachments to the file system.

Meta-Update - 104 - Script Samples

The ARS Schema is a
reference. As is the Query
qualification.

The ARS Schema’s fields are
copied into the output file’s
definition.

The output file name is the
passed prefix appended with
“.csv”

This single command
assigns all fields from the
table to the CSV converting
embedded line feeds and
quotes as specified.

#[Do]

AssignInit = asg-I

Query = Src, &

 $Arg, schema$, &

 $V, Qual$

Output = Tgt, &

 Out-f, &

 $Arg, F-out$.csv

Assign = asg

Launch = @if("$V, First$") Sv-Att-Struct

Launch = @if("$V, gotAtt$") Sv-Att

[Out-f]

This declares the output CSV file.

Type = Delimited, ",", FldHdr

Format = Quoted always Quotes escape lf escape

Fields = Out-f-flds

[Out-f-flds]

@Cmd = Copy, $Arg, schema$

[asg-I]

This "initial" assignment section initialises script variables

Input Tags

Arg Ptn "" or a query string

Output Tags

V First do Attachment File output one time

V gotAtt table has attachments; set Sv-Att-Struct

V Qual "1=1" or the passed query string

V AttPth the attachment path

@Cmd = Ref, V, gotAtt, 0

@Cmd = Ref, V, First, 1

@Cmd = Ref, V, Qual, "1=1"

@Cmd = Ref, V, AttPth, "$Arg, F-out$"

@Cmd = @if("Arg, qry" != "") &

 Ref, V, Qual, "Arg, qry"

[asg]

This is the assignment to the CSV file. Because all fields

from the table and CSV file match, we just issue a copy

@Cmd = Copy, Src

Meta-Update - 105 - Script Samples

If there are no attachment
fields, the loop is executed
zero times, no file is created,
and gotAtt is not set true.

No matter if there are any
attachment fields or not, we
want to set First false.

[Sv-Att-Struct]

This section saves the field names and ids of any attachment fields

into a special CSV processed by the companion script.

Input Tags

Src The source record

Output Tags

V First 0 we want to execute once only

V gotAtt 1 says we have attachment fields

Loop = Fields, Att, Src, Type Attachment

Output = TgtS, &

 Out-f-struct, &

 $Arg, F-out$.att.csv

Assign = Sv-Att-Struct-asg

AssignInit = Sv-Att-Struct-asg-Init

[AssignInit = Sv-Att-Struct-asg-Init]

@Cmd = Ref, V, First, 0

[Sv-Att-Struct-asg]

@Cmd = Ref, V, gotAtt, 1

AttFldNm = Att, FieldName

AttFldId = Att, FieldId

[Out-f-struct]

This declares the output CSV file listing the attachment fields

Type = Delimited, ",", FldHdr

Format = Quoted always Quotes escape lf escape

Fields = Out-f-struct-flds

[Out-f-struct-flds]

AttFldNm = $

AttFldId = $

Meta-Update - 106 - Script Samples

This will loop through all
attachment fields with non-
null values in the record just
loaded.

There is no output; an
AssignPre is called after the
next iteration is loaded and
this saves the attachment.

We use a regex that always
matches to effect a Subst.
This results in $V, ReqId$
holding a request id with
all ‘|’ changed to ‘-‘.

This saves the attachment to
the file system under a
unique name.

[Sv-Att]

This section extracts any Attachment fields into the file system

Input Tags

Src The source record

Output Tags

Att The @info for each attachment field

The AssignInit simply gets rid of any '|' in the request id value.

Loop = Fields, Att, Src, &

 Type Attachment, NoNulls

AssignPre = Sv-Att-asg

[Sv-Att-asg]

Here we are processing all non-null attachments in the record

We save them to the file system using the name:

id1-id2-fid.att

where id1 is the request id (with Join forms' | changed

to hyphens)

and fid is the attachment field id

An easy way to change '|' to - is by a Subst; we match

the whole string for the Subst to be effected.

@Cmd = Ref, V, Sv-Att-asg-regex, &

 @regex, /(.*)/, $Src, 1$

Now extract the attachment under the new file name which the

companion script will expect for non-null attachments.

@Cmd = AttachSave, Src, $Att, FieldName$, &

 $V, AttPth$-$V, ReqId$-$Att, FieldId$.att

[Sv-Att-asg-regex]

This field list is for the @regex that is used to change '|'

ReqId = $ Subst /|/-/

Meta-Update - 107 - Script Samples

This assigns a series of
“field / value” pairs to the Va

tag. We use references in
the fields to be assigned.

Increment Va, Max

Restore Script Overview

[Do] is the main command section and does no iteration or output instead only Launching

two sections once.

An AssignInit is used to initialize script variables. There is no Query argument in the restore
script. The AssignInit also determines if an Attachment Fields CSV exists or not. It does this
with a Reference spawn assignment that assigns “OK” to the stdout variable if the file exists.

Note that because of the UNIX if shell syntax the stdout and stderr redirection does not come
at the end of the command line and is explicitly stated.

[Do] will Launch [Do-Att-Flds] once only.

[Do-Att-Flds] processes the Attachment Fields CSV just building a “script array” of

Attachment Field Names and Field IDs and setting the number of attachment fields.

If there are no attachment fields, the CSV was not created and the number of attachment
fields remains 0.

[Do-Att-Flds]makes no output, so only an AssignPre is used. That AssignPre section

increments the number of attachment fields counter and sets the Field Name and Id into
the array.

[Do-Att-Flds-asg]

For each field, increase the number of fields,
and set it in the Va, Fnm and Fid arrays

@Cmd = Ref, Va, Max, @eval, Va, Max+1

@Cmd = Ref, Va, @, Do-asg-FF

[Do-asg-FF]

FnmVa, Max = F, AttFldNm

FidVa, Max = F, AttFldId

Tags built are like this:
 Va, Max 2

 Va, Fnm1 Attachment1

 Va, Fid1 5378001021

 Va, Fnm2 Attachment2

 Va, Fid2 5378001022

[Do] then Launches [Do-Load], the backup file handling section, since all Attachment fields

are now known.

[Do-Load] Processes the passed backup data file and updates the passed table

using ‘1’ = the first field of the file” as the update query.

Like the backup script, the File’s fields are copied from the schema and the schema in
the query and the file’s field’s copy is the $Arg, schema$ reference.

Because the file’s fields are copied, the file’s field 1 is the first schema field, or field
‘1’, and this is used in the Update= query.

Meta-Update - 108 - Script Samples

The Update is done with the Merge API and with Merge workflow inhibited. It is only
through the Merge API that core fields may be set (such as Request ID, Submitter,
Create Date).

Note that this restore script will not work with Join forms unless Merge workflow is
allowed. A write to a join can only write to the database if the filters on that join fire.

The Assignment section for the ARS Table Update= is the same for new or updated
records.

If there are any attachment fields and the backup data indicates that it is non-null, a
string is assigned with two file names:

 original attachment name, attachment file

 C:\dir\xxx.xxx, -prefix- ReqId – FieldId .att

Meta-Update can process attachment values as references, single file strings, or
double file strings. In the case of a double file string, the second string is the file in
the file system that contains the data of the attachment, and the first name is the file
name set into the attachment value.

Because the file is copied from the table, a simple copy assignment command will set
all fields to their backed up values skipping any fields that have already been
assigned a value.

Meta-Update - 109 - Script Samples

The AssignInit section
[asg-I] sets Va, Do to

true if the Attachment Fields
CSV exists in the expected
location.

Note different command to
determine file existence n
Windows and Unix. Note
use of $redir$ in Unix

command.

The echo produces
“OK<lf>” or “OK<cr><lf>”

in $V, stdout$, so we just

check for a leading OK.

Meta-Update script

Meta-Update sample script file.

Meta-Update is copyright 1996-2011 by Software Tool House Inc.

File: LdTbl.ini

Part of the sample scripts for Meta-Update.

Two scripts used to save and restore any ARS tables' data.

This is the Load script. See SvTbl.ini for the backup script.

This Load script will process the CSV files generated by the

save script and load all records including any attachments

#--

[Main]

[Main] gives sign-on info and declares Script arguments.

Server = $ ENV, ArsSvr $

PrmReq = . LdTbl.ini Do -p tbl outp

ArgNm = schema

ArgNm = F-inp

#--.do

[Do]

Before we can proceed with loading the data file, we'll need a list

of Attachment fields so that we can assign them as needed.

So, here, the AssignInit figures out if the attachment fields CSV

exists, then, launches [Do-Att-Flds] to save attachment fields in

script variables, and finally launch the Do-Load section to process

the backup data file against the ARS table.

AssignInit = asg-I

Launch = @if("Va, Do") Do-Att-Flds

Launch = Do-Load

[asg-I]

This "initial" assignment section sets Va, Do to the existence of

the "$Arg, F-inp$.att.csv" file and makes a few initializations.

Input Tags

Arg F-inp the output file name

Output Tags

Va Max init num attachment fields to 0

Va Do set to true if file $Arg, F-inp$.att.csv exists.

@Cmd = Ref, Va, Max, 0

@Cmd = Ref, Va, Do, 0

@Cmd = @if("CTL, OS" == "UNIX")

 @Cmd = Ref, V, @spawn, &

 if [-f '$Arg, F-inp$.att.csv'] ; &

 then echo OK $redir$; &

 fi;

@Cmd = else

 @Cmd = Ref, V, @spawn, &

 if exist "$Arg, F-inp$.att.csv" echo OK

@Cmd = endif

@Cmd = @if("$V, stdout$" ~= "OK")

 @Cmd = Ref, Va, Do, 1

@Cmd = endif

Meta-Update - 110 - Script Samples

This assigns a series of
“field / value” pairs to the Va

tag. We use references in
the fields to be assigned to
build an array.

Increment Va, Max

 [Do-Att-Flds]

The SvTbl companion script generated an attachment fields CSV.

We are only Launched if this file exists!

We set number of attachment fields for the Update= assignments.

Input Tags

Va Max 0 number of attachment fields

Output Tags

Va Max 0 + n number of attachment fields

Va Fnm1,2, .. char field name array 1..n

Va Fid1,2, .. int field id array 1..n

File = F, &

 Inp-f-att, &

 $Arg, F-inp$.att.csv

AssignPre = Do-Att-Flds-asg

[Do-Att-Flds-asg]

For each field, increase the number of fields, and set it in the

Va, Fnm and Fid arrays

@Cmd = Ref, Va, Max, @eval, Va, Max+1

@Cmd = Ref, Va, @, Do-asg-FF

[Do-asg-FF]

FnmVa, Max = F, AttFldNm

FidVa, Max = F, AttFldId

File declarations: the two input CSV files

Inp-f-att saved by SvTbl.ini; schema’s attachment fields

[Inp-f-att]

Type = Delimited, ",", FldHdr

Format = Quoted always Quotes escape lf escape

Fields = Inp-f-att-flds

[Inp-f-att-flds]

AttFldNm = $

AttFldId = $

Meta-Update - 111 - Script Samples

We use the reference $Src,

1$ to indicate the first CSV

field which will be Request
ID, Entry ID, and so on.

You cannot use NoWorkflow

on Join forms.

[Do-Load]

Loops through the given CSV (created by the companion script)

updating in the target table with the value of the first CSV

field (Request ID) being matched against '1'

We need to use Merge (like the Import Tool) so that we can assign

core fields like '1' etc. For Joins, remove NoWorkflow from Merge.

We know the number of attachment fields, their names, and ids, so

if the attachment fields are non-null, they are assigned with

their original file name and the expected file system name.

The remaining field values are simply copied from the CSV row.

File = Src, &

 Inp-f, &

 $Arg, F-inp$.csv

Update = Tgt, &

 $Arg, schema$, &

 '1' = "$Src, 1$"

AssignNew = Do-Load-asg

Assign = Do-Load-asg

Merge = Yes, NoWorkflow

[Do-Load-asg]

This is the assignment to the ARS record from the CSV file

(with the same fields as the ARS record). Because all fields

from the table and CSV file match, we just issue a copy.

We need the CoreAssign option because we want '1', '2', etc assigned

from the CSV - only available with Merge

If the attachment value in the CSV is non-null, we will have a

file named: id1-id2-fid.att

id1 etc is the request id (with ‘|’ changed to hyphens)

fid is the attachment field id

We change '|' to - with a Subst; we match all for the Subst

@Cmd = Ref, V, Ld-Att-asg-regex, @regex, /(.*)/, $Src, 1$

[Ld-Att-asg-regex]

This field list is for @regex used to substitute hyphens for '|'

ReqId = $ Subst /|/-/

Meta-Update - 112 - Script Samples

The maximum number of
attachment fields in any one
form should be handled
here, with, perhaps, an error
thrown if it is exceeded.

The remaining assignments
are handled with a Copy
command.

[Do-Load-asg]

handle attachments separately

@Cmd = @if("Va, Max")

 @Cmd = Ref, V, @info, Src, $Va, Fnm1$

 @Cmd = @if("$V, Value$")

 @Cmd = Ref, V, attval, &

 "$V, Value$,$V, AttPth$-$V, ReqId$-$Va, Fid1$.att"

 $V, FieldName$ = V, attval

 @Cmd = endif

 @Cmd = @if("Va, Max" > 1)

 @Cmd = Ref, V, @info, Src, $Va, Fnm2$

 @Cmd = @if("$V, Value$")

 @Cmd = Ref, V, attval, &

 "$V, Value$,$V, AttPth$-$V, ReqId$-$Va, Fid2$.att"

 $V, FieldName$ = V, attval

 @Cmd = endif

 @Cmd = @if("Va, Max" > 2)

 @Cmd = Ref, V, @info, Src, $Va, Fnm3$

 @Cmd = @if("$V, Value$")

 @Cmd = Ref, V, attval, &

 "$V, Value$,$V, AttPth$-$V, ReqId$-$Va, Fid3$.att"

 $V, FieldName$ = V, attval

 @Cmd = endif

 @Cmd = @if("Va, Max" > 3)

 @Cmd = endif

 @Cmd = endif

 @Cmd = endif

@Cmd = endif

@Cmd = Copy, Src, CoreAssign

Meta-Update - 113 - Script Samples

Index

Meta-Update - 114 - Script Samples

Index

A

Arguments
Meta-Update Usage 27

AssignNew=
Samples ... 99

C

Command Prompt
Ideal Properties .. 32

D

Developing
Scripts .. 39

E

Environment
Run Time .. 16
Running Meta-Update 15

Environment Variables............................ 22
SthMupdLic .. 24
SthScriptPath ... 22

F

File
Log Format ... 37
Logging Locally 34, 35
Trace Format .. 37
Tracing Locally 34, 35

L

LD_LIBRARY_PATH
Running .. 16

License
Meta-Update License Key 21

Logging
ARS Client Log Switches 33
Local Log File ... 28
Local Tracing .. 34
Message Format 37
Server Tracing .. 35
Switch Settings ... 32
The –d Switch .. 33
Tracing Locally ... 34

O

Output

Program Output .. 30

P

PATH
Running .. 16

Program
Meta-Update License Key 21
Meta-Update Output 30
Meta-Update Versions 20

Program Arguments
Meta-Update Usage 27

R

Return Values .. 29
Run Time Environment 16
Running .. 15

ARS Client Tracing 33
Environment for Meta-Update 15
Firing from Workflow 39
LD_LIBRARY_PATH 16
Local Tracing .. 34
Log File ... 28
Log Format ... 37
Logging ... 32, 33
Logging ARS Client 33
Logging Locally ... 34
Logging Server ... 35
Meta-Update Arguments 27
Meta-Update Environment Variables .. 22, 24
PATH .. 16
Program Output .. 30
Return Values ... 29
Server Tracing .. 35
stdout & stderr .. 29
Tracing .. 32
Tracing Format ... 37
Tracing Locally.. 34
Tracing Server .. 35

S

Scripts
Developing .. 39
SthMupdLic Environment Variable............ 24
SthScriptPath Environment Variable 22

stderr
Running .. 29

stdout
Running .. 29

SthMupdLic Environment Variable 24
SthScriptPath Environment Variable 22

Meta-Update - 115 - Script Samples

T

Tracing
ARS Client Log switches 33
Local Log File ... 28
Local Tracing .. 34
Message Format 37
Server Tracing .. 35
Switch Settings ... 32

V

Versions
Meta-Update Program Versions 20

W

Workflow
Running Meta-Update from 39

Meta-Update - 116 - Script Samples

	Preface
	Audience
	Limitation of Liability
	Copyrights
	Updates
	Comments

	Document Library
	Organisation
	Document Conventions
	Table of Contents
	Introduction
	Data Challenges
	Meta-Update: A New Way to Use The API

	Running Meta-Update
	Run Time Environment
	BMC Remedy API Versions
	ServiceNow API & System Properties
	System Properties Changes recomended

	Program Versions
	The License Key
	Environment Variables
	Script Path Environment Variable
	API Retry Environment Variable
	License Environment variable

	The Command Line
	Switches
	Usage Help Text

	Program Return Values
	Program Output
	Ideal Command Prompt Properties
	Tracing
	Two Trace Versions
	Local Tracing
	Server Tracing

	Trace Format

	Firing from Workflow
	Developing Scripts

	Samples
	Samples List
	Descriptions
	100-Path.ini
	110-PathFind.ini
	000-SvrInfo
	005-ArSchema – AR Schema Report
	006-ArSchema-pre71 – AR Schema Report
	610-ItsmAppProp
	900-SwLogs
	910-SvrInfo-set
	320-Tbl-Bkp
	620-Tbl-Rst
	340-Tbl-All-Bkp
	460-Change-Approve

	100-Path
	110-PathFind
	000-SvrInfo
	005-ArSchema
	600-ItsmVer
	610-ItsmAppProp
	900-SwLogs
	910-SvrInfo-set
	460-Change-Approve
	Ticket Creation Batch Command
	Closed Ticket Replicator
	Server Delta Copy
	ARS Table Backup and Restore

	Index

